自动控制原理【2021/12/19更新】

目录

写在前面

参考:
[1] Modern Control Systems, Dorf and Bishop
[2] 自动控制原理,胡寿松

(一) 控制系统导论

系统框图的绘制闭环系统
需要能够对一个控制系统绘制出相应的框图。(把每一部分找清楚,箭头上对应的是物理量)
大部分控制系统无非是为了跟踪输入,或是抑制扰动

(二) 系统数学模型

(1) 微分方程

需要掌握一些基础知识:电路、电机等
注:胡寿松《自动控制原理》(第七版)P28运放我看不懂。

(2) 传递函数

线性系统的传递函数:当两个变量的初值都假定为零时,输出变量的拉普拉斯变换与输入变量的拉普拉斯变换之比。
初值定理: lim ⁡ t → 0 + y ( t ) = lim ⁡ s → ∞ s Y ( s ) \lim_{t\rightarrow0^+}y(t)=\lim_{s\rightarrow\infty}sY(s) limt0+y(t)=limssY(s) (比如:我们可以用来求 y ′ ( 0 ) y'(0) y(0)
终值定理: lim ⁡ t → ∞ y ( t ) = lim ⁡ s → 0 s Y ( s ) \lim_{t\rightarrow\infty}y(t)=\lim_{s\rightarrow0}sY(s) limty(t)=lims0sY(s)

(3) 方框图

方框图的绘制与简化

(4) 信号流图

信号流图只适用于线性系统,方框图也可用于非线性系统。
梅森增益公式: T = ∑ k P k Δ k Δ T=\frac{\sum_kP_k\Delta_k}\Delta T=ΔkPkΔk Δ = 1 − ∑ n = 1 N L n + ∑ n , m 不 接 触 回 路 L n L m − ⋯ \Delta=1-\sum_{n=1}^NL_n+\sum_{n,m\mathrm{不接触回路}}L_nL_m-\cdots Δ=1n=1NLn+n,mLnLm回路:起点和终点在同一节点,而且信号通过每一节点不多于一次的闭合通路。
不接触回路:回路之间没有公共节点。
例1:求 y 7 / y 3 y_7/y_3 y7/y3信号流图例1
例2:求 y 6 / y 1 y_6/y_1 y6/y1(注意:不要漏掉回路)
信号流图例2

(三) 反馈控制系统的特性与性能

(1) 误差信号

误差信号 E ( s ) = R ( s ) − Y ( s ) E\left(s\right)=R\left(s\right)-Y\left(s\right) E(s)=R(s)Y(s)闭环控制系统
E ( s ) = 1 1 + L ( s ) R ( s ) − G ( s ) 1 + L ( s ) T d ( s ) + L ( s ) 1 + L ( s ) N ( s ) E\left(s\right)=\frac1{1+L\left(s\right)}R\left(s\right)-\frac{G\left(s\right)}{1+L\left(s\right)}T_d\left(s\right)+\frac{L\left(s\right)}{1+L\left(s\right)}N\left(s\right) E(s)=1+L(s)1R(s)1+L(s)G(s)Td(s)+1+L(s)L(s)N(s)
稳态误差
对于非单位负反馈系统,等效单位负反馈系统的开环传递函数 Z ( s ) Z\left(s\right) Z(s) Z ( s ) = L ( s ) 1 + L ( s ) ( H ( s ) − 1 ) Z\left(s\right)=\frac{L\left(s\right)}{1+L\left(s\right)(H\left(s\right)-1)} Z(s)=1+L(s)(H(s)1)L(s)我们可以得到非单位负反馈系统的误差常数为 K p = lim ⁡ s → 0 Z ( s ) K_p=\lim_{s\rightarrow0}Z\left(s\right) Kp=lims0Z(s), K v = lim ⁡ s → 0 s Z ( s ) K_v=\lim_{s\rightarrow0}sZ\left(s\right) Kv=lims0sZ(s), K a = lim ⁡ s → 0 s 2 Z ( s ) K_a=\lim_{s\rightarrow0}s^2Z\left(s\right) Ka=lims0s2Z(s)

(2) 二阶系统性能

二阶系统的阶跃响应
T s = 4 ζ ω n T_s=\frac4{\zeta\omega_n} Ts=ζωn4 T p = π ω n 1 − ζ 2 T_p=\frac{\mathrm\pi}{\omega_n\sqrt{1-\zeta^2}} Tp=ωn1ζ2 π M p t = 1 + e − ζ π 1 − ζ 2 M_{pt}=1+e^\frac{-\zeta\mathrm\pi}{\sqrt{1-\zeta^2}} Mpt=1+e1ζ2 ζπ P . O . = 100 e − ζ π 1 − ζ 2 P.O.=100e^\frac{-\zeta\mathrm\pi}{\sqrt{1-\zeta^2}} P.O.=100e1ζ2 ζπ T r 1 = 2.16 ζ + 0.60 ω n ( 0.3 ⩽ ζ ⩽ 0.8 ) T_{r_1}=\frac{2.16\zeta+0.60}{\omega_n}\left(0.3\leqslant\zeta\leqslant0.8\right) Tr1=ωn2.16ζ+0.60(0.3ζ0.8) t r = π − a r c c o s ζ ω n 1 − ζ 2 t_r=\frac{\mathrm\pi-\mathrm{arccosζ}}{\omega_n\sqrt{1-\zeta^2}} tr=ωn1ζ2 πarccosζ
频域性能指标
谐振峰值 M r M_{r} Mr是频率响应的最大值,它出现在谐振频率 ω r \omega_r ωr处。
带宽 ω B \omega_B ωB定义为在幅频特性曲线上,对数幅值增益从低频值下降3 d B dB dB时所对应的频率。在通常情况下,系统带宽与系统的阶跃响应速度成正比,与调节时间成反比。
剪切频率越大,时间响应越快。
M r = 1 2 ζ 1 − ζ 2 M_r=\frac1{2\zeta\sqrt{1-\zeta^2}} Mr=2ζ1ζ2 1 ω r = ω n 1 − 2 ζ 2 \omega_r=\omega_n\sqrt{1-2\zeta^2} ωr=ωn12ζ2 ω b = ω n 1 − 2 ζ 2 + 2 − 4 ζ 2 + 4 ζ 4 \omega_b=\omega_n\sqrt{1-2\zeta^2+\sqrt{2-4\zeta^2+4\zeta^4}} ωb=ωn12ζ2+24ζ2+4ζ4 ω c = ω n 1 + 4 ζ 4 − 2 ζ 2 \omega_c=\omega_n\sqrt{\sqrt{1+4\zeta^4}-2\zeta^2} ωc=ωn1+4ζ4 2ζ2 γ = a r c tan ⁡ 2 ζ 1 + 4 ζ 4 − 2 ζ 2 \gamma=arc\tan\frac{2\zeta}{\sqrt{\sqrt{1+4\zeta^4}-2\zeta^2}} γ=arctan1+4ζ4 2ζ2 2ζ
高阶系统 M r = 1 ∣ sin ⁡ γ ∣ M_r=\frac1{\left|\sin\gamma\right|} Mr=sinγ1 σ = 0.16 + 0.4 ( M r − 1 ) ,    1 ⩽ M r ⩽ 1.8 \sigma=0.16+0.4(M_r-1),\;1\leqslant M_r\leqslant1.8 σ=0.16+0.4(Mr1),1Mr1.8 t s = K 0 π ω c ( Δ = 5 % ) ,    K 0 = 2 + 1.5 ( M r − 1 ) + 2.5 ( M r − 1 ) 2 t_s=\frac{K_0\mathrm\pi}{\omega_c}(\Delta=5\%),\;K_0=2+1.5(M_r-1)+2.5{(M_r-1)}^2 ts=ωcK0π(Δ=5%),K0=2+1.5(Mr1)+2.5(Mr1)2

(3) 零点和第三个极点对二阶系统响应的影响

3.1 第三个极点

T ( s ) = 1 ( s 2 + 0.9 s + 1 ) ( γ s + 1 ) T\left(s\right)=\frac1{\left(s^2+0.9s+1\right)\left(\gamma s+1\right)} T(s)=(s2+0.9s+1)(γs+1)1第三个极点影响
第三个极点Matlab图

3.2 零点

T ( s ) = ( ω n 2 a ) ( s + a ) s 2 + 0.9 ω n s + ω n 2 T\left(s\right)=\frac{\left({\displaystyle\frac{\omega_n^2}a}\right)\left(s+a\right)}{s^2+0.9\omega_ns+\omega_n^2} T(s)=s2+0.9ωns+ωn2(aωn2)(s+a)零点

(4) *线性系统的简化

原系统 G H ( s ) = K a m s m + . . . + a 1 s + 1 b n s n + . . . + b 1 s + 1 G_H(s)=K\frac{a_ms^m+...+a_1s+1}{b_ns^n+...+b_1s+1} GH(s)=Kbnsn+...+b1s+1amsm+...+a1s+1
近似的低阶系统 G L ( s ) = K c p s p + . . . + c 1 s + 1 d g s g + . . . + d 1 s + 1 G_L(s)=K\frac{c_ps^p+...+c_1s+1}{d_gs^g+...+d_1s+1} GL(s)=Kdgsg+...+d1s+1cpsp+...+c1s+1
M 2 q = Δ 2 q M_{2q}=\Delta_{2q} M2q=Δ2q q = 1 , 2 , . . . q=1,2,... q=1,2,...其中 M 2 q = ∑ k = 0 2 q ( − 1 ) k + q M ( k ) ( 0 ) M ( 2 q − k ) ( 0 ) k ! ( 2 q − k ) ! M_{2q}=\sum_{k=0}^{2q}\frac{{(-1)}^{k+q}M^{(k)}(0)M^{(2q-k)}(0)}{k!(2q-k)!} M2q=k=02qk!(2qk)!(1)k+qM(k)(0)M(2qk)(0),类似定义 Δ 2 q \Delta_{2q} Δ2q
例子见书5.9例5.91
例5.92
原系统
原系统: t r = 2.74 s t_r=2.74s tr=2.74s t s = 5 s t_s=5s ts=5s
近似系统
近似系统: t r = 2.75 s t_r=2.75s tr=2.75s t s = 4.82 s t_s=4.82s ts=4.82s
课本写的是不太合适的,用欠阻尼系统的近似公式估算一个过阻尼系统。

(四) 劳斯判据

(1) 内容

对特征方程 a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 = 0 a_ns^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0=0 ansn+an1sn1++a1s+a0=0,正实部根的个数等于劳斯判定表第一列元素的正负符号的变化次数。
劳斯判据

(2) 特殊情况

2.1 首列中出现零元素,所在行存在非零元素

可用 ε \varepsilon ε代替零元素参与计算或用因子 ( s + a ) \left(s+a\right) (s+a)乘以原特征方程

2.2 出现全零行

特征根关于零点对称时会出现这种情况。可用上一行的系数构造辅助方程 F ( s ) = 0 F\left(s\right)=0 F(s)=0,并将方程对s求导,使用所得导数方程的系数。

2.3 虚轴上有重根

如果在虚轴上的共轭根是重根,则系统是不稳定的,而劳斯判据不能发现这种不稳定。

(3) 相对稳定性

(五) 根轨迹

(1) 步骤

绘制根轨迹

(2) 零度根轨迹

(3) 开环零极点影响

增加开环极点,将多一条发散轨迹,该轨迹对原有轨迹有排斥作用,系统稳定性变差。
增加开环零点,将少一条发散轨迹,系统稳定性变好。

(4) 根轨迹簇

研究多个参数对系统的影响。考虑特征方程 s 3 + 3 s 2 + 2 s + β s + α = 0 s^3+3s^2+2s+\beta s+\alpha=0 s3+3s2+2s+βs+α=0。先令 β = 0 \beta=0 β=0,绘制根轨迹,在所得根轨迹上,找到 α \alpha α为特定值时对应的根,然后绘制关于 β \beta β的根轨迹。
根轨迹簇

(六) 频率响应法

(1) 频率响应

系统的频率响应:系统对正弦输入信号的稳态响应。 y ( t ) = A ∣ T ( j ω ) ∣ sin ⁡ ( ω t + ϕ ) y\left(t\right)=A\left|T\left(j\omega\right)\right|\sin\left(\omega t+\phi\right) y(t)=AT(jω)sin(ωt+ϕ)

(2) 极坐标图

(3) 波特图

所有零点都在s平面左半平面的传递函数称为最小相位传递函数。

(4) 对数幅相图

(七) 频域稳定性

(1) 奈奎斯特稳定性判据

闭环反馈控制系统稳定的充要条件是 L ( s ) L(s) L(s) s s s平面上的映射像围线 τ L \tau_L τL沿逆时针方向包围 ( − 1 , 0 ) (-1,0) (1,0)点的周数,等于 L ( s ) L(s) L(s) s s s右半平面内极点的个数。

(2) 相对稳定性

幅值裕度,相角裕度 ζ = 0.01 γ \zeta=0.01\gamma ζ=0.01γ

(3) 尼科尔斯图

(4) 时延系统

(八) 反馈控制系统设计

(1) 波特图设计超前校正

1.根据稳态误差,确定开环增益
2.计算待校正系统的相角裕度
3.计算所需添加的超前相角, sin ⁡ φ m = a − 1 a + 1 \sin\varphi_m=\frac{a-1}{a+1} sinφm=a+1a1计算 a a a
4.计算 10 l o g a 10loga 10loga,在待校正系统的幅频特性曲线上确定与 − 10 l o g a d B -10logadB 10logadB对应的频率,即为 ω c \omega_c ωc同时也是 ω m \omega_m ωm
5.计算 p = ω m a , z = p / a p=\omega_m\sqrt a,z=p/a p=ωma ,z=p/a,确认相角裕度是否满足,若不满足,则重复

(2) 根轨迹设计超前校正

1.根据系统性能指标,计算主导极点的预期位置
2.绘制待校正系统的根轨迹
3.先将超前校正网络零点直接配置在预期主导极点下方(或在前两个开环极点的左侧近旁)
4.配置超前校正网络的极点,使得在预期主导极点处,满足相角要求
5.在预期主导极点处,确定系统总增益,计算系统稳态误差常数是否满足,若不满足,则重复

(3) 根轨迹设计滞后校正

1.根据系统性能指标,计算主导极点的预期位置
2.绘制待校正系统的根轨迹
3.根据预期主导极点,确定待校正系统的增益,并计算此时的稳态误差常数
4.比较矫正前后的稳态误差常数,计算所需的增益放大倍数,即为校正网络零极点幅值之比,配置零极点在靠近原点的地方
根轨迹设计滞后校正

(4) 波特图设计滞后校正

1.根据稳态误差,确定待校正系统增益,绘制波特图
2.计算待校正系统的相角裕度
3.确定能够满足相角裕度要求的穿越频率 ω c \omega_c ωc,可以预留 5 ° 5° 5°
4.配置零点应比穿越频率小十倍频程,即 1 b T = 0.1 ω c ′ ′ \frac1{bT}=0.1\omega_c'' bT1=0.1ωc
5.根据增益 − 20 l o g b -20logb 20logb计算参数 b b b

(5) 波特图设计超前滞后校正

1.根据稳态误差,确定开环增益
2.绘制波特图,确定 ω c \omega_c ωc γ \gamma γ h h h
3.选择斜率从 − 20 -20 20变为 − 40 -40 40的频率为超前部分的交接频率 ω b \omega_b ωb
4.根据系统特性要求选取 ω c ′ \omega_c' ωc 20 l g α = L ( ω c ′ ) + 20 l g ( ω c ′ / ω b ) 20lg\alpha=L(\omega_c')+20lg(\omega_c'/\omega_b) 20lgα=L(ωc)+20lg(ωc/ωb)得出 α \alpha α
5.根据相角裕度估算 ω a \omega_a ωa
6.检验已校正系统的各项性能指标

(5) 根轨迹设计超前滞后校正

1.根轨迹设计超前校正
2.根轨迹设计滞后校正
E6-21

(6) 最小节拍响应系统设计

最小节拍响应:既能具有最小的超调量,又有快速到达稳态响应的允许波动范围,并且能够持续保持在该波动范围之内的时间响应。
最小节拍响应

(7) 一些例子

例1
E10.18
G c ( s ) = 30 s + 300 s G_c(s)=\frac{30s+300}{s} Gc(s)=s30s+300 G p ( s ) = 10 G_p(s)=10 Gp(s)=10

例2 G ( s ) = 40 s 2 ( s + 40 ) G(s)=\frac{40}{s^2(s+40)} G(s)=s2(s+40)40,设计合适的校正网络,使得系统足够稳定,超调量在 10 % 10\% 10% 20 % 20\% 20%之间,调节时间不大于 2 s 2s 2s(按 2 % 标 准 2\%标准 2%)
P10.4

主要是要抵消闭环零点对系统性能指标的影响。
例3 G ( s ) = K a 3.75 ( s + 0.15 ) ( 0.15 s + 1 ) G(s)=K_a\frac{3.75}{(s+0.15)(0.15s+1)} G(s)=Ka(s+0.15)(0.15s+1)3.75,设计合适的 P I PI PI控制器,使得系统稳态误差为零,超调量为 10 % 10\% 10%,调节时间小于 1.5 s 1.5s 1.5s(按 2 % 标 准 2\%标准 2%)。若采用超前校正网络,重新完成,并比较结果。
P10.5
P10.6

P10.4_MatlabP10.6_Matlab
PI超前

设计 P I PI PI控制器时,答案中如何取到 a = 0.2 a=0.2 a=0.2的呢?事实上,我们为使得系统的特性与主导极点的特性接近,可以将闭环系统多出的一对零极点设计非常接近。对于 G c ( s ) G ( s ) = 25 K ( s + a ) s ( s + 0.15 ) ( s + 6.67 ) G_c(s)G(s)=\frac{25K(s+a)}{s(s+0.15)(s+6.67)} Gc(s)G(s)=s(s+0.15)(s+6.67)25K(s+a),其特征方程为 s 3 + 6.82 s 2 + ( 25 K + 1 ) s + 25 K a = 0 s^3+6.82s^2+(25K+1)s+25Ka=0 s3+6.82s2+(25K+1)s+25Ka=0。令 ( s + a ) (s+a) (s+a)为该特征方程的一个因式,即 s = − a s=-a s=a为特征方程的解,得 − a 3 + 6.82 a 2 − ( 25 K + 1 ) a + 25 K a = 0 -a^3+6.82a^2-(25K+1)a+25Ka=0 a3+6.82a2(25K+1)a+25Ka=0,解得 a = 0.15 a=0.15 a=0.15 a = 6.67 a=6.67 a=6.67。注意到 s 3 + 6.82 s 2 + ( 25 K + 1 ) s + 25 K a = ( s + a ) ( s 2 + 2 ζ ω n + w n 2 ) s^3+6.82s^2+(25K+1)s+25Ka=(s+a)(s^2+2\zeta\omega_n+w_n^2) s3+6.82s2+(25K+1)s+25Ka=(s+a)(s2+2ζωn+wn2),展开可知 2 ζ ω n + a = 6.82 2\zeta\omega_n+a=6.82 2ζωn+a=6.82,我们取 a = 0.15 a=0.15 a=0.15,进一步可以求得 K = 1.278 , ζ ω n = 3.335 K=1.278,\zeta\omega_n=3.335 K=1.278ζωn=3.335
在这里插入图片描述
例4 G ( s ) = 5000 s ( s + 20 ) ( s + 5 ) G(s)=\frac{5000}{s(s+20)(s+5)} G(s)=s(s+20)(s+5)5000,设计校正网络,使得 K v > 40 K_v>40 Kv>40 ζ = 0.7 \zeta=0.7 ζ=0.7
P10.8
注意根轨迹图。
P10.8_Matlab
例5
P10.9
P10.9_Matlab
对于开环波特图,对应在 ω = 6 \omega=6 ω=6时幅值最大
例6 G ( s ) = K s ( s / 2 + 1 ) ( s / 6 + 1 ) G(s) = \frac{K}{s(s/2+1)(s/6+1)} G(s)=s(s/2+1)(s/6+1)K,用两个完全相同的一阶超前校正网络串联起来,实现对系统的二阶校正,使得 K v = 20 K_v=20 Kv=20,相角裕度为 45 ° 45° 45°,闭环带宽大于 4 r a d / s 4rad/s 4rad/s
P10.20
例7 G ( s ) = e − s / 2 G(s)=e^{-s/2} G(s)=es/2,试设计一个合适的 G c ( s ) G_c(s) Gc(s),使阶跃响应稳态误差小于 2 % 2\% 2%,相角裕度 30 ° 30° 30°,计算校正后带宽。
P10.36

(九) 数字控制系统

(1) 典型结构图

数字控制系统结构图

(2) z z z域传递函数

2.1 零阶保持器

G ( s ) = G 0 ( s ) G p ( s ) G(s)=G_0(s)G_p(s) G(s)=G0(s)Gp(s) G ( z ) = Z { G ( s ) } = ( 1 − z − 1 ) Z ( G p ( s ) s ) G(z)=Z\{G(s)\}=(1-z^{-1})Z(\frac{G_p(s)}s) G(z)=Z{G(s)}=(1z1)Z(sGp(s))

2.2 串联环节之间有采样开关

D ( z ) = G 1 ( z ) G 2 ( z ) D(z)=G_1(z)G_2(z) D(z)=G1(z)G2(z)

2.3 串联环节之间无采样开关

D ( z ) = G 1 G 2 ( z ) D(z)=G_1G_2(z) D(z)=G1G2(z)

2.4 闭环系统计算

1.选取中间变量,该中间变量为某一采样开关的输出
2.建立等式,化简,消去中间变量
以下图为例,选取 E 1 ∗ ( s ) E_1^*(s) E1(s) E 1 ( z ) = R G 1 ( z ) − E 1 ( z ) G 2 H G 1 ( z ) E_1(z)=RG_1(z)-E_1(z)G2HG1(z) E1(z)=RG1(z)E1(z)G2HG1(z),可得, E 1 ( z ) = R G 1 ( z ) 1 + G 2 H G 1 ( z ) E_1(z)=\frac{RG_1(z)}{1+G_2HG_1(z)} E1(z)=1+G2HG1(z)RG1(z),代入 C ( z ) = E 1 ( z ) G 2 ( z ) C(z)=E_1(z)G_2(z) C(z)=E1(z)G2(z),即得 C ( z ) = R G 1 ( z ) G 2 ( z ) 1 + G 2 H G 1 ( z ) C(z)=\frac{RG_1(z)G_2(z)}{1+G_2HG_1(z)} C(z)=1+G2HG1(z)RG1(z)G2(z)
闭环离散系统举例
闭环离散系统

2.5 稳态误差

e s s ( ∞ ) = lim ⁡ z → 1 ( 1 − z − 1 ) E ( z ) e_{ss}(\infty)=\lim_{z\rightarrow1}(1-z^{-1})E(z) ess()=limz1(1z1)E(z)

(3) 稳定性

z = w + 1 w − 1 z=\frac{w+1}{w-1} z=w1w+1,根据劳斯判据判断稳定性

(4) 控制器设计

设计 G c ( s ) = K s + a s + b G_c(s)=K\frac{s+a}{s+b} Gc(s)=Ks+bs+a,转换成 D ( z ) = C z − A z − B D(z)=C\frac{z-A}{z-B} D(z)=CzBzA A = e − a T    B = e − b T    C 1 − A 1 − B = K a b A=e^{-aT}\;B=e^{-bT}\;C\frac{1-A}{1-B}=K\frac ab A=eaTB=ebTC1B1A=Kba

(5) P I D PID PID数字控制器的实现

s s s域中, U ( s ) X ( s ) = G c ( s ) = K p s + K I s + K D s \frac{U(s)}{X(s)}=G_c(s)=K_ps+\frac{K_I}{s}+K_Ds X(s)U(s)=Gc(s)=Kps+sKI+KDs,求对应的离散 P I D PID PID控制器
对于微分, u ( k T ) = 1 T ( x ( k T ) − x ( ( k − 1 ) T ) ) u(kT)=\frac{1}{T}(x(kT)-x((k-1)T)) u(kT)=T1(x(kT)x((k1)T)) U ( z ) = 1 − z − 1 T X ( z ) = z − 1 T z X ( z ) U(z)=\frac{1-z^{-1}}{T}X(z)=\frac{z-1}{Tz}X(z) U(z)=T1z1X(z)=Tzz1X(z)
对于积分, u ( k T ) = u ( ( k − 1 ) T ) + T x ( k T ) u(kT)=u((k-1)T)+Tx(kT) u(kT)=u((k1)T)+Tx(kT) U ( z ) = z − 1 U ( z ) + T X ( z ) U(z)=z^{-1}U(z)+TX(z) U(z)=z1U(z)+TX(z) U ( z ) X ( z ) = T z z − 1 \frac{U(z)}{X(z)}=\frac{Tz}{z-1} X(z)U(z)=z1Tz
从而, G c ( z ) = K P + K I T z z − 1 + K D z − 1 T z G_c(z)=K_P+\frac{K_ITz}{z-1}+K_D\frac{z-1}{Tz} Gc(z)=KP+z1KITz+KDTzz1

(十) 线性系统的状态空间分析与综合

(1) 标准型

(2) 可控性、可观性

(3) 极点配置、状态观测器

(4) 离散时间系统

G ( T ) = e A T G(T)=e^{AT} G(T)=eAT H ( T ) = ( ∫ 0 T e A λ d ⁡ λ ) B H(T)=(\int_0^Te^{A\lambda}\operatorname d\lambda)B H(T)=(0TeAλdλ)B

(十一) 非线性系统

(1) 非线性系统概述

1.1 典型非线性环节

继电特性 产生振荡
死区特性 存在稳态误差
饱和特性
间隙特性

1.2 非线性系统的特点

多孤立平衡点
极限环、自激振荡
混沌
分岔
不仅含有同频率,还含有高次谐波分量
有限逃逸时间

(2) 描述函数法

2.1 应用条件

非线性系统的结构图可简化成一个非线性环节 N N N和一个线性部分 G ( s ) G(s) G(s)串联的闭环结构。(本身具有或者能通过转换)
N ( A ) N(A) N(A)奇对称,基波幅值占优。
非线性 时不变。
系统的线性部分具有良好的低通滤波特性。

2.2 描述函数

N ( X , ω ) = B 1 + j A 1 X N(X,\omega)=\frac{B_1+jA_1}{X} N(X,ω)=XB1+jA1
描述函数

2.3 非线性特性的串并联

2.4 稳定性分析

a.若 G ( j ω ) G(j\omega) G(jω)不包围 − 1 N -\frac{1}{N} N1 ⇒ \Rightarrow 稳定
b.若 G ( j ω ) G(j\omega) G(jω) − 1 N 相 交 -\frac{1}{N}相交 N1 ⇒ \Rightarrow 临界稳定
进一步,分析极限环的稳定性
c.若 G ( j ω ) G(j\omega) G(jω)包围 − 1 N -\frac{1}{N} N1 ⇒ \Rightarrow 不稳定

2.5 极限环分析

− 1 N ( A ) -\frac{1}{N(A)} N(A)1 G p ( s ) G_p(s) Gp(s)实部、虚部分别相等
例:分析 x ¨ + x ˙ = { 1 , x ˙ − x > 0 − 1 , x ˙ − x < 0 \ddot x+\dot x=\left\{\begin{array}{l}1,\dot x-x>0\\-1,\dot x-x<0\end{array}\right. x¨+x˙={1,x˙x>01,x˙x<0系统的极限环
先把系统表示成分线性部分和线性部分,进一步再分析(结果 X = 2 2 π X=\frac{2\sqrt2}{\pi} X=π22

2.6 描述函数法的准确性

− 1 N ( A ) -\frac{1}{N(A)} N(A)1 G p ( s ) G_p(s) Gp(s)越接近垂直时,得到的结果越准确
描述函数法对于正弦输入的准确性更高
描述函数法的难度和准确性只取决于非线性部分

(3) 相平面法

3.1 相轨迹

x ¨ + f ( x , x ˙ ) = 0 ⇒ d x ˙ d x = − f ( x , x ˙ ) x ˙ \ddot x+f(x,\dot x)=0\Rightarrow\frac{d\dot x}{dx}=\frac{-f(x,\dot x)}{\dot x} x¨+f(x,x˙)=0dxdx˙=x˙f(x,x˙)
相轨迹的绘制:解析法、等倾线法

3.2 二阶线性系统的相轨迹

焦点 节点 中心点 鞍点

3.3 奇点

(4) 李雅普诺夫稳定性

4.1 定义

对于平衡点 x = 0 x=\mathbf0 x=0,我们有:
李雅普诺夫稳定: ∀ R > 0 , ∃ r > 0 , ∥ x ( 0 ) ∥ < r ⇒ ∀ t ≥ 0 , ∥ x ( t ) ∥ < R \forall R>0,\exists r>0,\left\|x(0)\right\|<r\Rightarrow\forall t\geq0,\left\|x(t)\right\|<R R>0,r>0,x(0)<rt0,x(t)<R
渐近稳定:李雅普诺夫稳定,且 ∃ r > 0 , ∥ x ( 0 ) ∥ < r ⇒ lim ⁡ t → ∞ x ( t ) = 0 \exists r>0,\left\|x(0)\right\|<r\Rightarrow\lim_{t\rightarrow\infty}x(t)=\mathbf0 r>0,x(0)<rlimtx(t)=0
指数稳定: ∃ α > 0 , λ > 0 , ∀ t > 0 , ∥ x ( t ) ∥ ⩽ α ∥ x ( 0 ) ∥ e − λ t \exists\alpha>0,\lambda>0,\forall t>0,\left\|x(t)\right\|\leqslant\alpha\left\|x(0)\right\|e^{-\lambda t} α>0,λ>0,t>0,x(t)αx(0)eλt
如果对于任意的初始状态,渐进稳定或指数稳定的条件成立,那么我们称为全局渐近稳定或全局指数稳定。

4.2 李雅普诺夫线性化方法

李雅普诺夫第一方法、间接法

4.3 李雅普诺夫直接法

李雅普诺夫第二方法
系统的李雅普诺夫函数: V ( x ) > 0 , V ˙ ( x ) ⩽ 0 V(x)>0,\dot V(x)\leqslant0 V(x)>0,V˙(x)0

(十二) 一些tips

1.卷纸过程张力控制
卷纸过程张力控制答案
答案所给的框图中的积分环节应该缺少了一个系数。
分析整个系统时,可以从偏差信号开始。

2.为使用奈氏判据等判断系统稳定性时,我们可以将传递函数转化成一些更容易操作的函数。(保证闭环特征方程不变)
3. 传递函数的约分 不约分
4. 如 x 3 x^3 x3,求描述函数时,可以直接算输出并取基次谐波,除以输入。
5.中频段以 − 20 d B / d e c -20dB/dec 20dB/dec穿越 0 d B 0dB 0dB线,稳定 但若 − 60 d B / d e c -60dB/dec 60dB/dec转到 − 20 d B / d e c -20dB/dec 20dB/dec也不稳定。
6. P D PD PD控制器产生有效的早期修正信号,增加系统的阻尼程度,提高系统的响应速度,提高系统的稳定性。但会放大高频信号,系统抗干扰能力减弱。
P I PI PI控制器提高系统的型别,提高系统的精度,系统跟踪能力增强,系统的稳定性下降。
7.系统的脉冲响应反映了系统的静特性,系统的动特性可以用正弦信号响应来反映。
8.考虑稳态误差前,先判断稳定性。
9.一道有一定计算的题目
设单位负反馈系统的开环传递函数为 G ( s ) = ω n 2 s ( s + 2 ζ ω n ) G(s)=\frac{{\omega_n}^2}{s(s+2\zeta\omega_n)} G(s)=s(s+2ζωn)ωn2,已知闭环频率特性的模 ∣ ϕ ( j 2 ) ∣ = 1 2 ζ |\phi(j2)|=\frac{1}{2\zeta} ϕ(j2)=2ζ1,相角裕度为 γ = 26.56 ° \gamma=26.56° γ=26.56°。试求输入 r ( t ) = 3 s i n 4 t r(t)=3sin 4t r(t)=3sin4t时,系统的稳态输出。
答案: ω n = 2 \omega_n=2 ωn=2 ζ = 0.236 \zeta=0.236 ζ=0.236 c ∞ ( t ) = 0.954 s i n ( 4 t − 162.5 ° ) c_∞(t)=0.954sin(4t-162.5°) c(t)=0.954sin(4t162.5°)
10.闭环实数零极点。零点减小系统阻尼,峰值时间提前,超调量增大;极点增大系统阻尼,峰值时间滞后,超调量减小。
11.线性定常系统的李雅普诺夫稳定性分析
A T P + P A = − Q A^TP+PA=-Q ATP+PA=Q G T P G − P = − Q G^TPG-P=-Q GTPGP=Q
12.增加实极点,调节时间的变化不确定。如本文3.1。绝对值越小,超调减少越明显。
13.如果考试用计算器算时,注意一下弧度制、角度制。
14.PID定性影响PID定性影响
15.求稳态误差前,先判断稳定性
稳定性
16.1个根轨迹1个根轨迹
17.波特图通过实际值确定传递函数
0 < ζ < 2 2 , M r = 1 2 ζ 1 − ζ 2 0<\zeta<\frac{\sqrt2}{2},M_r=\frac{1}{2\zeta\sqrt{1-\zeta^2}} 0<ζ<22 ,Mr=2ζ1ζ2 1
2 2 < ζ < 1 , M r = 2 ζ 1 − ζ 2 \frac{\sqrt2}{2}<\zeta<1,M_r=2\zeta\sqrt{1-\zeta^2} 22 <ζ<1,Mr=2ζ1ζ2
ω r = ω n 1 − 2 ζ 2 \omega_r=\omega_n\sqrt{1-2\zeta^2} ωr=ωn12ζ2
18.对于二阶系统来说,增加开环零点,会增大系统阻尼。对于高阶系统,可能减小系统阻尼。
19.低频段决定了系统的稳态性能,中频段决定了系统的动态性能,高频段决定了系统的抗扰性能

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值