这篇文章介绍了一种新型多模态图像融合框架,该框架基于状态空间模型(State Space Models, SSMs),通过随机洗牌(Random Shuffle)策略来消除固定扫描顺序带来的偏差,并通过蒙特卡洛平均法(Monte Carlo averaging)来提高模型的输出稳定性。该方法在多模态图像融合任务中表现出色,优于现有的最先进方法。
背景知识
多模态图像融合是指将来自不同成像模态(如卫星图像中的多光谱和全色图像,或医学图像中的CT和MRI)的图像信息进行整合,以生成更具信息量的合成图像。这种融合可以提高图像的空间和光谱分辨率,对于遥感和医学诊断等领域具有重要意义。
研究方法
文章提出了一种基于状态空间模型(SSMs)的多模态图像融合方法。该方法的核心在于引入了一种随机洗牌(Random Shuffle)的扫描策略,以消除固定扫描顺序带来的偏差,并通过逆洗牌(inverse shuffle)操作来保持信息的协调不变性。基于这种变换对,作者定制了Shuffle Mamba框架,以确保在多模态图像融合中实现鲁棒的交互和无偏的全局感受野。
随机洗牌策略
- 动机:传统