创飞CNN和Transformer!Mamba+多模态图像融合,性能速度双巅峰!霸榜顶会!

非常建议所有做图像任务的伙伴,多关注这一创新Max,轻松拿捏顶会的思路:Mamba+多模态图像融合!

Mamba的引入,给多模态图像融合带来了全新的视角,使图像融合的质量和效率都得到了显著提升!这是因为,以往主要是用CNN和Transformer做多模态图像融合。但CNN无法捕捉全局信息;Transformer囿于二次计算复杂度,计算开销大。而Mamba同时具有长距离依赖建模和计算效率高的优势,能够克服两者的局限。比如模型FusionMamba便通过结合Mamba,不仅性能提升25.5%,在视觉上也展现了更多细节!

此外,Mamba作为新模型,当下还在蓝海阶段,创新空间很大。

为了方便大家获得灵感启发,我给大家整理了8种前沿思路,原文和代码都有,一起来看!

论文原文+开源代码需要的同学看文末

论文:MambaDFuse: A Mamba-based Dual-phase Model for  Multi-modality Image Fusion
内容

该论文介绍了一个名为MambaDFuse的新型多模态图像融合模型,该模型基于Mamba架构,通过双阶段特征提取和双相特征融合模块,有效地结合了不同模态图像中的互补信息。MambaDFuse在红外-可见光图像融合和医学图像融合任务中展现了优异的性能,并在统一的基准测试中证明了其在下游任务(如目标检测)中的性能提升。

图片


论文:FusionMamba: Dynamic Feature Enhancement for  Multimodal Image Fusion with Mamba
内容

该论文介绍了一个名为FusionMamba的新型多模态图像融合方法,该方法基于Mamba框架,通过动态特征增强技术,有效地结合了不同模式的信息,以创建包含全面信息和详细纹理的单个图像,通过改进的高效Mamba模型进行图像融合,该模型整合了动态卷积和通道注意力,不仅保持了Mamba的性能和全局建模能力,还减少了通道冗余并增强了局部增强能力。

图片

论文:Shuffle Mamba: State Space Models with Random Shuffle  for Multi-Modal Image Fusion
内容

该论文提出了一种名为Shuffle Mamba的新型多模态图像融合方法,该方法基于状态空间模型(SSM),引入了一种贝叶斯启发式扫描策略,称为随机洗牌(Random Shuffle),并通过理论上可行的逆洗牌操作来保持信息协调不变性,定制了Shuffle Mamba框架,深入模态感知信息表示和跨模态信息交互,确保了多模态图像融合的稳健交互和无偏全局感受野。

图片


论文:MSFMamba: Multi-Scale Feature Fusion State  Space Model for Multi-Source Remote Sensing  Image Classification
内容

该论文这篇论介绍了一种名为MSFMamba的多尺度特征融合状态空间模型,用于多源遥感图像分类。该模型结合了超光谱图像(HSI)和激光雷达/合成孔径雷达(LiDAR/SAR)数据,通过三个主要部分:多尺度空间Mamba(MSpa-Mamba)块、光谱Mamba(Spe-Mamba)块和融合Mamba(FusMamba)块,来解决特征冗余和多源数据之间的异构性问题,通过扩展原始Mamba模型以适应双输入,并增强了跨模态特征交互。

图片

 关注下方《人工智能学起来》

回复“8mmf”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值