论文阅读《多模态结合Mamba模型》

论文:《Fusion-Mamba for Cross-modality Object Detection》预印本

地址:https://arxiv.longhoe.net/abs/2405.01828

        针对目标检测多模态融合领域,提出了一项基于Mamba与YOLO结合的目标检测模型框架(基于Mamba的backbone和YOLOv8的neck以及head结合)。他们的思路还是来源于UMNET中的VSS BlocK,在其基础上做很小的修改;另一个点就是首次将Mamba应用于多模态领域。

        第一点:选择的跨模态融合是RGB加IR(普通的图像与红外图像相结合)。

        第二点:文章的创新点主要为在借鉴YOLO的Backbone结构,设计了一种新的基于Mamba的多模态数据融合结构。(其中包含两个模块SSCS和DSSF分别用于浅层特征融合和深度特征融合)

        第三点:工作量比较大,选用三个数据集(LLVIP, M3FD and FLIR)进行实验。并且在对比效果上达到了比较理想的提点效果。

        上图所示是模型的整体结构,其中黄色框表示普通的卷积块。FMB使用的一个SSCS和多个DSSF。

        简述SSCS和DSSF的作用:在SSCS中进行通道交互,之后分别利用VSS对新的图像进行特征提取(改善融合性能);DSSF模块进一步减少模态差异,通过双方向门控注意力在隐藏状态空间中进行特征融合,以增强融合特征的表示一致性(简而言之就是深层特征融合)。

        作者主要的SOTA模型对比实验以及消融实验是在FLIR数据集上完成的。从实验结果上来看,确实取得了不错的检测精度,但多模态检测模型的参数量可能也是一个因素。 

        如有理解不对,恳请各位批评指正。

### 配置 Spatial-Mamba 环境 为了成功配置 Spatial-Mamba 的开发环境,需要遵循一系列标准流程来确保所有依赖项和工具链都已正确安装。以下是关于如何设置该环境的具体说明: #### 1. 安装必要的软件包 Spatial-Mamba 是一种基于深度学习框架的解决方案,通常会依赖于 PyTorch 或 TensorFlow 这样的库。因此,在开始之前,请确认已经安装了这些基础组件。 对于 Python 软件包管理器 `pip` 和虚拟环境的支持,可以按照以下命令创建一个新的虚拟环境并激活它: ```bash python3 -m venv spatial-mamba-env source spatial-mamba-env/bin/activate ``` 接着更新 pip 并安装核心依赖项[^1]: ```bash pip install --upgrade pip pip install torch torchvision torchaudio ``` 如果项目涉及图像处理,则可能还需要额外安装 OpenCV 库以及 NumPy 数组支持: ```bash pip install opencv-python numpy scikit-image ``` #### 2. 数据集准备 根据引用中的描述,某些实验可能会用到 ImageNet-1K 数据集作为训练素材之一[^4]。可以通过官方脚本下载解压此数据集合: 运行如下指令获取完整的图片文件夹结构: ```bash cd /path/to/dataset/ wget http://www.image-net.org/challenges/LSVRC/2012/dd3193fd8dd57a6d.tar.gz tar xf dd3193fd8dd57a6d.tar.gz python autodl-pub/ImageNet/extract_imagenet.py ``` 注意替换 `/path/to/dataset/` 成实际存储路径位置。 #### 3. 模型架构调整与优化 针对特定应用场景比如皮肤病变分割或者多模态磁共振成像(MRI),需引入通道注意力机制(Channel-Spatial Attention) 及频谱信息融合技术(Spatial-Frequency Information Fusion)[^2] 来增强网络表现力。这一步骤往往涉及到修改原始 Mamba 架构代码实现自定义层操作。 假设采用的是 PyTorch 实现方式, 则可以在模型定义部分加入类似下面这样的逻辑片段用于增加空间感知能力: ```python import torch.nn as nn class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() ... def forward(self,x): avg_out = ... # average pooling branch processing here max_out = ... # maximum pooling branch processing there out = avg_out + max_out return self.sigmoid(out) # Integrate into main model architecture later... model.add_module('ca_layer',ChannelAttention(planes)) ``` 以上仅展示了一个简单的例子,具体细节应参照原论文附录给出的设计思路进一步完善。 #### 4. 测试与验证阶段 完成上述准备工作之后就可以着手构建测试套件评估系统的稳定性与泛化性能了。考虑到不同时间段内的输入特征差异较大,建议模仿 STG-Mamba 方法论设计多样化的评测指标体系[^3]: 例如分别记录高峰时段、低谷期以及其他特殊条件下各项统计数值的变化趋势曲线图;同时观察是否存在显著波动现象从而判断当前版本是否具备足够的鲁棒特性。 --- ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值