论文阅读《多模态结合Mamba模型》

论文:《Fusion-Mamba for Cross-modality Object Detection》预印本

地址:https://arxiv.longhoe.net/abs/2405.01828

        针对目标检测多模态融合领域,提出了一项基于Mamba与YOLO结合的目标检测模型框架(基于Mamba的backbone和YOLOv8的neck以及head结合)。他们的思路还是来源于UMNET中的VSS BlocK,在其基础上做很小的修改;另一个点就是首次将Mamba应用于多模态领域。

        第一点:选择的跨模态融合是RGB加IR(普通的图像与红外图像相结合)。

        第二点:文章的创新点主要为在借鉴YOLO的Backbone结构,设计了一种新的基于Mamba的多模态数据融合结构。(其中包含两个模块SSCS和DSSF分别用于浅层特征融合和深度特征融合)

        第三点:工作量比较大,选用三个数据集(LLVIP, M3FD and FLIR)进行实验。并且在对比效果上达到了比较理想的提点效果。

        上图所示是模型的整体结构,其中黄色框表示普通的卷积块。FMB使用的一个SSCS和多个DSSF。

        简述SSCS和DSSF的作用:在SSCS中进行通道交互,之后分别利用VSS对新的图像进行特征提取(改善融合性能);DSSF模块进一步减少模态差异,通过双方向门控注意力在隐藏状态空间中进行特征融合,以增强融合特征的表示一致性(简而言之就是深层特征融合)。

        作者主要的SOTA模型对比实验以及消融实验是在FLIR数据集上完成的。从实验结果上来看,确实取得了不错的检测精度,但多模态检测模型的参数量可能也是一个因素。 

        如有理解不对,恳请各位批评指正。

### Mamba 模型相关论文概述 #### 关于Mamba模型的发展历史及其重要性 Mamba模型的研究和发展经历了一系列重要的里程碑。值得注意的是,Mamba的故事与Word2vec有相似之处,在早期阶段曾面临挑战。尽管最初的提交在2013年的ICLR会议上遭到拒绝,但这并未阻止其后续发展并最终成为自然语言处理(NLP)领域的重要组成部分[^4]。 #### 经典版本:MambaMamba-2 对于希望深入了解Mamba架构的经典实现方式而言,《MambaMamba-2经典论文》是一个不可或缺的资料来源。这份文档不仅涵盖了原始设计理念和技术细节,还探讨了这些技术如何应用于实际场景中,并通过具体案例分析证明了它们的有效性和优越性[^1]。 #### 多模态学习探索:VL-Mamba 《Exploring State Space Models for Multimodal Learning》一文中介绍了VL-Mamba框架,这是对传统Mamba结构的一次扩展尝试。文章重点描述了状态空间建模方法是如何帮助提高多模态环境下信息融合效果的具体机制[^2]。 #### 增强版编码器——T-Mamba 为了更好地满足特定应用场景下的需求,《T-Mamba: An Enhanced Encoder with Tokenization Capability》提出了改进后的T-Mamba方案。相较于基础版本和其他竞争者来说,这种新型号能够在保持较高精度的同时减少计算成本,从而达到更好的性价比表现[^3]。 ```python # 示例代码展示 T-Mamba 的部分特性 class TMambaEncoder(nn.Module): def __init__(self, vocab_size, embedding_dim=512, num_heads=8, feedforward_dim=2048): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) # 更高效的自注意力层设计 self.self_attention = EfficientSelfAttention(embedding_dim, num_heads) def forward(self, input_ids): embeddings = self.embedding(input_ids) attended_output = self.self_attention(embeddings) return attended_output ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值