二、Jetson Xavier NX上运行例程

换源

添加国内清华源前,先进行备份

# 备份
sudo cp /etc/apt/sources.list /etc/apt/sources/list.back
# 修改源
sudo vi /etc/apt/sources.list

注释原内容,添加以下源:

deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse

然后更新和清除

sudo apt update  更新安装程序列表
sudo apt autoremove  清除安装包
sudo apt upgrade  对现有包进行升级

安装Jetson-inference

mkdir ~/workspace
cd workspace/
git clone https://gitee.com/vcan123/jetson-inference
cd jetson-inference/
git submodule update --init  初始化
mkdir build
cd build
cmake ..
// 不下载模型,也不安装pytorch 跳过就行
make

在make的时候,出错过好几次,反复多装几次吧,确实挺难装的,下图是make完成,然后就可以跑例程了。

在这里插入图片描述

测试官方例程:

模型文件地址:https://github.com/dusty-nv/jetson-inference/releases

一、目标分类:

进入jetson-inference→data→networks

将模型解压至当前文件夹,在当前文件夹下打开终端

  tar -xzf /your file path

在Jetson-inference→build→aarch64→bin下打开终端

./imagenet-camera --network=googlenet --camera=0
# 或 ./imagenet-camera --network=googlenet --camera=/dev/video0

看教程,使用的是—camera=0,我是用的是USB摄像头,显示的设备为video0,但使用第一个命令时画面显示不出来,使用—camera=/dev/video0之后就可以了。

二、图像分割:

解压模型到jetson-inference→data→networks中

tar -xzf /your file path

在Jetson-inference→build→aarch64→bin下打开终端运行命令

./segnet-console   # 查看所需要的参数项
./segnet-console --network=fcn-alexnet-aerial-fpv-720p ./images/fruit_0.jpg fruit_0.jpg 

三、人脸检测:

解压模型到jetson-inference→data→networks中

tar -xzf /your file path

在Jetson-inference→build→aarch64→bin下打开终端运行命令

./detectnet-camera --network=facenet --camera=/dev/video0

YOLOv4测试:

下载包和模型:

yolov4:github地址

weights:yolov4yolov4-tiny

修改Makefile以下几项:

GPU=1
CUDNN=1
CUDN_HALF=1
OPENCV=1
LIBSO=1
NVCC=/usr/local/cuda-10.2/bin/nvcc

在darknet-master文件夹下打开终端命令行,对进行编译 make,完成后就可以进行下面的测试了。

对图像进行检测:

./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights data/horses.jpg

在这里插入图片描述

对视频进行检测:

./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights data/test_video.mp4

对摄像头采集的数据进行检测:

./darknet detector demo  cfg/coco.data cfg/yolov4.cfg yolov4.weights
# 或 ./darknet detector demo  cfg/coco.data cfg/yolov4.cfg yolov4.weights /dev/video0  # 加入了摄像头参数

使用默认的摄像头,由于输入为1920x1080,我的NVIDIA Jetson Xavier NX跑起来帧率在2.5fps,在最后加上使用的摄像头后,输入图像大小为640x480,帧率在5.5fps。

换用yolov4-tiny进行测试

./darknet detector demo  cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights
# 或 ./darknet detector demo  cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights /dev/video0 # 加入了摄像头参数

换用yolo-tiny后,输入为1920x1080时帧率几乎不变还是2.5fps,这部分我目前还挺好奇的。加入摄像头操参数后,输入为640x480后,帧率为30fps(可能受摄像头帧率的影响,摄像头帧率为30fps)。

在这里插入图片描述

推荐Jetson nano教学视频_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值