换源
添加国内清华源前,先进行备份
# 备份
sudo cp /etc/apt/sources.list /etc/apt/sources/list.back
# 修改源
sudo vi /etc/apt/sources.list
注释原内容,添加以下源:
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
然后更新和清除
sudo apt update 更新安装程序列表
sudo apt autoremove 清除安装包
sudo apt upgrade 对现有包进行升级
安装Jetson-inference
mkdir ~/workspace
cd workspace/
git clone https://gitee.com/vcan123/jetson-inference
cd jetson-inference/
git submodule update --init 初始化
mkdir build
cd build
cmake ..
// 不下载模型,也不安装pytorch 跳过就行
make
在make的时候,出错过好几次,反复多装几次吧,确实挺难装的,下图是make完成,然后就可以跑例程了。
测试官方例程:
模型文件地址:https://github.com/dusty-nv/jetson-inference/releases
一、目标分类:
进入jetson-inference→data→networks
将模型解压至当前文件夹,在当前文件夹下打开终端
tar -xzf /your file path
在Jetson-inference→build→aarch64→bin下打开终端
./imagenet-camera --network=googlenet --camera=0
# 或 ./imagenet-camera --network=googlenet --camera=/dev/video0
看教程,使用的是—camera=0
,我是用的是USB摄像头,显示的设备为video0,但使用第一个命令时画面显示不出来,使用—camera=/dev/video0
之后就可以了。
二、图像分割:
解压模型到jetson-inference→data→networks中
tar -xzf /your file path
在Jetson-inference→build→aarch64→bin下打开终端运行命令
./segnet-console # 查看所需要的参数项
./segnet-console --network=fcn-alexnet-aerial-fpv-720p ./images/fruit_0.jpg fruit_0.jpg
三、人脸检测:
解压模型到jetson-inference→data→networks中
tar -xzf /your file path
在Jetson-inference→build→aarch64→bin下打开终端运行命令
./detectnet-camera --network=facenet --camera=/dev/video0
YOLOv4测试:
下载包和模型:
yolov4:github地址
weights:yolov4,yolov4-tiny
修改Makefile以下几项:
GPU=1
CUDNN=1
CUDN_HALF=1
OPENCV=1
LIBSO=1
NVCC=/usr/local/cuda-10.2/bin/nvcc
在darknet-master文件夹下打开终端命令行,对进行编译 make,完成后就可以进行下面的测试了。
对图像进行检测:
./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights data/horses.jpg
对视频进行检测:
./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights data/test_video.mp4
对摄像头采集的数据进行检测:
./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights
# 或 ./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights /dev/video0 # 加入了摄像头参数
使用默认的摄像头,由于输入为1920x1080,我的NVIDIA Jetson Xavier NX跑起来帧率在2.5fps,在最后加上使用的摄像头后,输入图像大小为640x480,帧率在5.5fps。
换用yolov4-tiny进行测试
./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights
# 或 ./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights /dev/video0 # 加入了摄像头参数
换用yolo-tiny后,输入为1920x1080时帧率几乎不变还是2.5fps,这部分我目前还挺好奇的。加入摄像头操参数后,输入为640x480后,帧率为30fps(可能受摄像头帧率的影响,摄像头帧率为30fps)。