yolov10 使用自己的数据集训练目标检测模型

54 篇文章 14 订阅 ¥69.90 ¥99.00
本文介绍了如何使用YOLOv10进行目标检测模型的训练。首先,通过anaconda配置环境,然后利用lableImage工具制作自定义数据集,并配置data.yaml文件。接着,在数据集同级目录创建train.py文件启动训练,权重文件保存在runs目录。最后,创建infer.py文件进行预测并放置待检测图片。
摘要由CSDN通过智能技术生成

1 环境配置(使用anaconda)

conda create -n yolov10 python=3.9  //创建虚拟环境
conda activate yolov10  //激活虚拟环境
pip install -r requirements.txt //执行yolov10 路径下requirements.txt 安装依赖
pip install -e .

2.数据集制作

使用lableImage制作数据集(win版软件私信获取)

这样标注完之后可以在保存标签的目录看到yolo格式的标签,它会自己生成如下文件

配置data.yaml文件如下:
names根据自己数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雨轩智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值