线性代数的本质
一、 什么是向量
1.定义
物理:向量是空间中的箭头
计算机:有序的数字列表
数学:保证两个向量相加以及数乘是有意义的
即:
每个向量可以理解为向一个方向行进一段距离。
二、 线性组合、向量张成的空间与基
1、基向量i ̂、j ̂
i ̂:在x轴上长度为1的向量
j ̂:在Y轴上长度为1的向量
对于向量
可以看为3i ̂+(-2) j ̂两个经过缩放的向量的和
2. 基向量可以任意指定,用数字描述向量时依赖于当前使用的基
3. 两个数乘向量的和被称为这两个向量的线性组合
线性:如果固定一个向量让另一个向量自由变化,所产生的向量的终点会形成一条直线
4. 张成空间(span)
所以可以表示为给定向量线性组合的向量的集合
(1).对于大部分的二维向量,张成的空间是所有二维向量的集合
(2).对于共线的两个向量,张成空间是落在一条直线上的向量的集合
5.线性相关
对于v ⃗ w ⃗ 如果v ⃗ = a w ⃗则称这两个向量线性相关
如果所有向量都给空间增加了新的维度,就被称为线性无关。
所以基向量的定义为:张成该空间的一个线性无关的向量的集合
三、 矩阵与线性变换
1. 线性变换(变换后网格线保持平行且等距分布)
(1).变化前后不会产生弯曲
(2).原点保持不变
2.任意向量的线性变换都可以考虑为基向量的变换,因为任意一个向量在变换前后都可以表示为两个基向量特定的线性组合
例子一、逆时针旋转90°的矩阵
例子二、错切(SHEAR)
2. 如果两个基向量在变换后一个是另一个的倍数那么这个线性变换将整个二维空间挤压到一条直线上,任意向量在变换后就落在这两个向量所张成的一维空间上,称为矩阵的空间变换
3. 线性的严格定义
若一个变换L满足以下两条性质
四、 矩阵与向量乘法与线性变换的复合联系
1. 矩阵的乘积
两个变换的相继作用
2. 矩阵乘法不满足交换律但满足结合律
3. 三维空间的线性变化可以看做一个9*9的矩阵
五、 行列式
1. 线性变换对于一个面积的变换
因为一个线性变化后的网格保持平行且等距分布,所以任意面积可以看作为任意正方形的变化,比如两个基向量所形成的正方形,这个正方形在线性变换前后所改变面积的比例被称为这个变换的行列式(Determinant)
如果线性变换的行列式为负数则说明这个线性变换的前后空间发生了反转
2. 将行列式扩展至三维空间
六、逆矩阵、列空间与零空间
1.矩阵的用途
空间的操纵、求解特定方程组
2.线性方程组
3.逆变换
4.秩(Rank):变换后空间的维度
秩达到最大值被称为满秩
5.列空间
6.零空间
变换后落在原点的向量的集合被称为矩阵的零空间或者核
7.非方阵不同维度空间之间的线性变换
对于一个 3*2 矩阵的几何意义是将二维空间映射到三维空间上同样三维空间也可以 映射到二维空间上
在不同维度空间的线性变换的背景下思考矩阵乘积核线性方程组等概念的意义
七、点积与对偶性
1. 点积
对于两个维数相同的向量的点积
2. 点积的几何意义
3. 为什么对应坐标相乘并相加和投影有所联系
所以对任意向量应用压缩空间的线性变换等价于点乘这个线性变换矩阵的转 置向量,在二维空间中将向量线性变换到一个数轴上等于这个向量在这个数轴所代 表的的单位向量上的投影,所以对应坐标的相乘并相加与投影产生了联系,这也是 数学上对偶性的体现,是一种数学事务之间自然而又出乎意料的对应关系
八、叉积的标准
九、以线性变换的眼光看待叉积★
1. 对偶性
每当你看到一个空间到一个数轴的线性变换时,这个线性变换都会与空间中唯一一 个向量对应,应用这个线性变换和与这个向量点乘等价,因为这类变换可以用一个 只有一行的矩阵描述,每一列代表变换后的基向量的位置。
十、基变换
1. 坐标系
发生在向量与一组数之间的任意一种转换,都称之为坐标系。
十一、特征值特征向量
1. 预备知识:线性变换,行列式,线性方程组,基变换
2. 变换的特征向量:在变换后不改变其张成空间的向量
3. 特征值:衡量特征向量变换后伸缩比例的因子
4. 扩展至三维空间中如果能找到一个向量在旋转前后不改变他所张成的空间那么 这个向量就是这个旋转的旋转轴
5. 特征值与特征向量的计算
6. 有可能出现一个特征值对应多个特征向量的情况,比如将两个基向量等比缩放 的线性变换等。
7. 特征基
如果基向量恰好是特征向量,则称之为特征基
十二、抽象空间
1. 向量的空间性
2. 向量与函数
函数之间的相加就是把函数输出的结果相加 函数的数乘与向量的数乘类似
向量的线性变换可以应用在函数上,想象一个函数变换为另一个函数的情况, 很容易想到导数,导数就是线性变换因为其满足可加性和成比例两个条件