本文由知乎
赵俊军
授权转载,知乎主页为https://www.zhihu.com/people/zhao-jun-jun-19
10.9 统计静态时序分析
到目前为止介绍的静态时序分析技术是确定性的,因为分析基于的是设计中所有时序弧的固定延迟。每个时序弧的延迟都是根据工作条件以及工艺和互连模型计算得出的,尽管可能存在多个模式和多个角,但给定情况下的时序路径延迟是可以明确获得的。
实际上,执行STA时通常使用的工艺和工作条件的最差情况(WCS)或最佳情况(BCF)对应于极端的3σ角。时序库基于的是代工厂提供的带有工作条件的工艺角模型,这些条件对应于单元时序值的不同角。例如,使用快速工艺模型、最高电源和最低温度来表征最佳情况的快速时序库。
10.9.1 工艺和互连走线变化
全局工艺变化
全局工艺变化(global process variation),也称为芯片间器件变化(inter-die device variations),是指影响芯片(或晶圆)上所有器件的工艺参数变化,参见图10-24。这表明芯片上的所有器件都会受到这些工艺变化的影响,芯片上的每个器件都会是slow或是fast的,或者介于两者之间。 因此,通过全局工艺参数建模的变化旨在捕获芯片与芯片之间的变化。
图10-25中显示了全局参数值(例如g_par1)的变化。例如,参数g_par1可以对应于标准NMOS器件的IDSsat(器件饱和电流)。由于这是一个全局参数,因此芯片上所有单元实例中的所有NMOS器件将对应于相同的g_par1值。可以有如下选择:所有单元实例的g_par1的变化是完全相关的,或者芯片上g_par1的变化相互影响。注意,可能还存在其它全局参数(g_par2,...),其可能可以对PMOS器件饱和电流和其它相关变量建模。
不同的全局参数(g_par1,g_par2,...)之间是不相关的。不同全局参数的变化是不会相互影响的,这意味着g_par1和g_par2参数彼此将独立地变化。在一块芯片上,g_par1可能处于最大值,而g_par2可能处于最小值。
在确定性(即非统计性)分析中,慢速工艺模型可能对应于芯片间变化的+ 3σ角的条件。类似地,快速工艺模型可能对应于芯片间变化的-3σ角的条件。
局部工艺变化
局部工艺变化(local process variation),也称为芯片内器件变化,是指工艺参数的变化,这些变化可以在给定芯片上影响不同器件,参见图10-26。这意味着并排放置在同一芯片上的相同器件可能具有不同的行为。由局部工艺变化建模的变化旨在捕获芯片内的随机工艺变化。
图10-27显示了局部工艺参数的变化。芯片上的局部参数变化不会相互影响,并且它们从一个单元实例到另一单元实例的变化是不相关的。这意味着对于同一芯片上的不同器件,局部参数可能具有不同的值。例如,芯片上的不同NAND2单元实例可能会具有不同的局部工艺参数值。即使其它参数(例如输入压摆和输出负载)相同,这也可能导致同一NAND2单元的不同实例具有不同的延迟值。
由全局和局部变化引起的NAND2单元延迟变化的示意图如图10-28所示。该图说明了全局参数变化比局部参数变化引起的延迟变化更大。
局部工艺变化是打算在使用OCV建模的分析中捕获的变化之一,如10.1节中所述。由于统计时序模型通常包括局部工艺变化,因此使用统计时序模型进行的OCV分析不应在OCV设置中包括局部工艺变化。
互连走线变化
如10.8节中所述,实际上存在着各种互连角,它们代表影响互连电阻和电容值的每个金属层的参数变化。这些参数变化通常是金属和电介质的厚度以及影响各种金属层中金属走线的宽度和间距的金属刻蚀。通常,影响金属的参数会影响该金属层中所有走线的寄生参数,但对其它金属层中走线的寄生影响很小甚至是没有影响。
10.8节中介绍的互连角可用于对互连走线变化进行建模,以便所有金属层都对应到相同的互连角下。对互连走线变化进行统计建模时,每个金属层都可以独立地变化。统计方法会对互连走线空间中所有可能的变化组合进行建模,从而对仅通过在指定互连角下进行分析可能无法捕获的变化进行建模。例如,时