深度学习经典目标检测实例分割语义分割网络的理解之二 RCNN

本篇主要剖析R-CNN网络架构,参考了几篇优秀的博文!特别是@shenxiaolu1984 的目标检测系列博文。

https://blog.csdn.net/shenxiaolu1984/article/details/51066975

 

思想:

本文意在缓解经典的目标检测模型的两个关键问题:

问题一:速度

经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。在目标检测时,为了定位到目标的具体位置,通常会把图像分成许多子块(sub-regions / patches),然后把子块作为输入,送到目标识别的模型中。分子块的最直接方法叫滑动窗口法(sliding window approach)。滑动窗口的方法就是按照子块的大小在整幅图像上穷举所有子图像块。这种方法产生的数据量想想都头大。和滑动窗口法相对的是另外一类基于区域(region proposal)的方法。selective search就是其中之一!

问题二:训练集

经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数据库: 
一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类。 
一个较小的检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类。 
本文使用识别库进行预训练,而后用检测库调优参数。最后在检测库上评测。

 

流程:

RCNN算法分为4个步骤 

- 一张图像生成1K~2K个候选区域 
- 对每个候选区域,使用深度网络提取特征 
- 特征送入每一类的SVM 分类器,判别是否属于该类 
- 使用回归器精细修正候选框位置 

这里写图片描述

 

候选区域生成

这部分还参考了@guoyunfei20的一篇专门介绍selective search 的博文,非常棒:

https://blog.csdn.net/guoyunfei20/article/details/78723646

 

使用了Selective Search1方法从一张图像生成约2000-3000个候选区域。

  1. 过分割算法:分成过小的区域。
  2. 重复合并可能是同一目标的框,直到

其步骤如下:

step0:生成区域集R,具体参见论文《Efficient Graph-Based Image Segmentation》

step1:计算区域集R里每个相邻区域的相似度S={s1,s2,…} 
step2:找出相似度最高的两个区域,将其合并为新集,添加进R 
step3:从S中移除所有与step2中有关的子集 
step4:计算新集与所有子集的相似度 

step5:跳至step2,直至S为空

换句话说就是先使用一种过分割手段将图像分割成小区域,再合并可能性最高的两个区域。重复直到整张图像合并成一个区域位置 输出所有曾经存在过的区域,所谓候选区域候选区域生成和后续步骤相对独立,实际可以使用任意算法进行。

 

过分割:采用基于图的图像分割:

参考博客:https://blog.csdn.net/aiaiai010101/article/details/64128380

参考博客:https://zhuanlan.zhihu.com/p/27467369

参考博客:https://www.cnblogs.com/zyly/p/9259392.html

相似度计算

颜色、纹理、尺寸和空间交叠这4个参数。

颜色相似度(color similarity)
将色彩空间转为HSV,每个通道下以bins=25计算直方图,这样每个区域的颜色直方图有25*3=75个区间。 对直方图除以区域尺寸(w*h=像素点个数)做归一化后使用下式计算相似度:

纹理相似度(texture similarity)

论文采用方差为1的高斯分布在8个方向做梯度统计,然后将统计结果(尺寸与区域大小一致)以bins=10计算直方图。直方图区间数为8*3*10=240(使用RGB色彩空间)。

其中,是直方图中第个bin的值。

尺寸相似度(size similarity)

保证合并操作的尺度较为均匀,避免一个大区域陆续“吃掉”其他小区域。

例:设有区域a-b-c-d-e-f-g-h。较好的合并方式是:ab-cd-ef-gh -> abcd-efgh -> abcdefgh。 不好的合并方法是:ab-c-d-e-f-g-h ->abcd-e-f-g-h ->abcdef-gh -> abcdefgh。

交叠相似度(shape compatibility measure)

3.5、最终的相似度

 

多样化与后处理

 

为尽可能不遗漏候选区域,上述操作在多个颜色空间中同时进行(RGB,HSV,Lab等)。在一个颜色空间中,使用上述四条规则的不同组合进行合并。所有颜色空间与所有规则的全部结果,在去除重复后,都作为候选区域输出。

作者提供了Selective Search的源码,内含较多.p文件和.mex文件,难以细查具体实现。

最后的数据结构

一张输入图片,得到2K个候选框,有重叠的情况。结构维度(2000,x,y,w,h)

 

特征提取

候选样本预处理

使用深度网络提取特征之前,首先把候选区域归一化成同一尺寸227×227(Alexnet的输入尺寸)。 
此处有一些细节可做变化:外扩的尺寸大小,形变时是否保持原比例,对框外区域直接截取还是补灰。会轻微影响性能。

预训练

网络结构 
基本借鉴Hinton 2012年在Image Net上的分类网络2,略作简化3。 
这里写图片描述 
此网络提取的特征为4096维,之后送入一个4096->1000的全连接(fc)层进行分类。 
学习率0.01。

训练数据 
使用ILVCR 2012的全部数据进行训练,输入一张图片,输出1000维的类别标号。

调优训练(fine turning)

网络结构 
同样使用上述网络,最后一层换成4096->21的全连接网络。 
学习率0.001,每一个batch包含32个正样本(属于20类)和96个背景。

训练数据 
使用PASCAL VOC 2007的训练集,输入一张图片,输出21维的类别标号,表示20类+背景。 
考察一个候选框和当前图像上所有标定框重叠面积最大的一个。如果重叠比例大于0.5,则认为此候选框为此标定的类别;否则认为此候选框为背景。

类别判断

分类器 
对每一类目标,使用一个线性SVM二类分类器进行判别。输入为深度网络输出的4096维特征,输出是否属于此类。 
由于负样本很多,使用hard negative mining方法。 即大多数选择出来的候选框都是背景其实。
正样本 
本类的真值标定框。 
负样本 
考察每一个候选框,如果和本类所有标定框的重叠都小于0.3,认定其为负样本

位置精修

目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。 
回归器 

对每一类目标,使用一个线性脊回归器进行精修。加入一个l2_norm的惩罚项(这部分我也不确定。。。正则项λ=10000)

输入为深度网络pool5层的4096维特征,输出为xy方向的缩放和平移。 


训练样本 

判定为本类的候选框中,和真值重叠面积大于0.6的候选框。

结果

论文发表的2014年,DPM已经进入瓶颈期,即使使用复杂的特征和结构得到的提升也十分有限。本文将深度学习引入检测领域,一举将PASCAL VOC上的检测率从35.1%提升到53.7%。 
本文的前两个步骤(候选区域提取+特征提取)与待检测类别无关,可以在不同类之间共用。这两步在GPU上约需13秒。 
同时检测多类时,需要倍增的只有后两步骤(判别+精修),都是简单的线性运算,速度很快。这两步对于100K类别只需10秒
 

这里找到一个github的代码:https://github.com/broadinstitute/keras-rcnn 用Keras复现的。

                                                                                                                                                                                              

参考文献:

  1. J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013. 
  2. A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012
  3. Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. 
  4. Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Systems. 2015. 
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值