Google Earth Engine(GEE)——Python干旱严重程度案例分析

本教程通过Google Earth Engine(GEE)使用Python分析帕尔默干旱严重程度指数(PDSI),展示如何创建日历热图和条形图以理解干旱趋势。数据经过过滤、减少、转换并导入到Pandas DataFrame,最后通过Altair库生成图表,揭示了2012年至2016年的严重干旱期。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在本节中,我们将把干旱严重程度的时间序列视为日历热图和条形图。

导入数据

  1. 将网格化的帕尔默干旱严重程度指数 (PDSI) 数据加载为ee.ImageCollection.
  2. 将 EPA 3 级生态区边界加载为ee.FeatureCollection并对其进行过滤以仅包括内华达山脉区域,该区域定义了感兴趣的区域 (AOI)。
    #加载影像筛选波段,加载感兴趣的区域然后进行矢量边界筛选
    pdsi = ee.ImageCollection('GRIDMET/DROUGHT').select('pdsi')
    aoi = ee.FeatureCollection('EPA/Ecoregions/2013/L3').filter(
        ee.Filter.eq('na_l3name', 'Sierra Nevada')).geometry()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值