Google Earth Engine ——地表水的位置和时间分布30米分辨率(JRC/GSW1_0/GlobalSurfaceWater)数据集

This dataset contains maps of the location and temporal distribution of surface water from 1984 to 2015 and provides statistics on the extent and change of those water surfaces. For more information see the associated journal article: High-resolution mapping of global surface water and its long-term changes (Nature, 2016) and the online Data Users Guide.

These data were generated using 3,066,102 scenes from Landsat 5, 7, and 8 acquired between 16 March 1984 and 10 October 2015. Each pixel was individually classified into water / non-water using an expert system and the results were collated into a monthly history for the entire time period and two epochs (1984-1999, 2000-2015) for change detection.

This mapping layers product consists of 1 image containing 7 bands. It maps different facets of the spatial and temporal distribution of surface water over the last 32 years. Areas where water has never been detected are masked.

该数据集包含1984年至2015年地表水的位置和时间分布图,并提供这些水面的范围和变化的统计数据。更多信息见相关期刊文章。全球地表水及其长期变化的高分辨率地图(自然,2016)和在线数据用户指南。

这些数据是使用1984年3月16日至2015年10月10日期间获取的Landsat 5、7和8的3,066,102个场景生成的。使用专家系统将每个像素单独分类为水/非水,并将结果整理为整个时间段的月度历史和两个纪元(1984-1999年,2000-2015年),用于变化检测。

该测绘层产品由1张包含7个波段的图像组成。它描绘了过去32年中地表水的空间和时间分布的不同方面。从未检测到水的区域被掩盖了。

Dataset Availability

1984-03-16T00:00:00 - 2015-10-18T00:00:00

Dataset Provider

EC JRC / Google

Collection Snippet

ee.Image("JRC/GSW1_0/GlobalSurfaceWater")

Resolution

30 meters

Bands Table

NameDescriptionMinMaxUnits
occurrenceThe frequency with which water was present.0100%
change_absAbsolute change in occurrence between two epochs: 1984-1999 vs 2000-2015.-100100%
change_normNormalized change in occurrence. (epoch1-epoch2)/(epoch1+epoch2) * 100-100100%
seasonalityNumber of months water is present.012
recurrenceThe frequency with which water returns from year to year.0100%
transitionCategorical classification of change between first and last year.
max_extentBinary image containing 1 anywhere water has ever been detected.
max_extent Bitmask
  • Bit 0: Flag indicating if water was detected or not
    • 0: Not water
    • 1: Water

Class Table: transition

ValueColorColor ValueDescription
0#ffffffNo change
1#0000ffPermanent
2#22b14cNew permanent
3#d1102dLost permanent
4#99d9eaSeasonal
5#b5e61dNew seasonal
6#e6a1aaLost seasonal
7#ff7f27Seasonal to permanent
8#ffc90ePermanent to seasonal
9#7f7f7fEphemeral permanent
10#c3c3c3Ephemeral seasonal

数据说明:

All data here is produced under the Copernicus Programme and is provided free of charge, without restriction of use. For the full license information see the Copernicus Regulation.

Publications, models, and data products that make use of these datasets must include proper acknowledgement, including citing datasets and the journal article as in the following citation.

If you are using the data as a layer in a published map, please include the following attribution text: 'Source: EC JRC/Google'

 引用:

Jean-Francois Pekel, Andrew Cottam, Noel Gorelick, Alan S. Belward, High-resolution mapping of global surface water and its long-term changes. Nature 540, 418-422 (2016). (doi:10.1038/nature20584)

代码:

var dataset = ee.Image('JRC/GSW1_0/GlobalSurfaceWater');
var occurrence = dataset.select('occurrence');
var occurrenceVis = {
  min: 0.0,
  max: 100.0,
  palette: ['ffffff', 'ffbbbb', '0000ff'],
};
Map.setCenter(59.414, 45.182, 6);
Map.addLayer(occurrence, occurrenceVis, 'Occurrence');

### 关于西安电子科技大学数据结构教学资源 对于希望获取西安电子科技大学的数据结构课程相关资源的学生而言,可以访问学校官方提供的在线学习平台以及图书馆数据库。这些平台上通常会提供由教授编写的讲义、课件PPT、习题集和往年试题等材料[^1]。 另外,在互联网上也存在一些第三方网站或论坛,上面有该校历届学生分享的学习笔记个人整理的知识点总结文档。不过需要注意的是,从非官方渠道下载资料可能存在版权风险,建议优先考虑通过正规途径获得授权的教学资源。 如果想要更深入地了解这门学科并准备考研,则可以根据学长学姐推荐的参考书籍进行自学复习。这类书籍往往涵盖了考试大纲所要求的核心概念和技术要点,并配有大量实例分析帮助理解抽象理论。 ```python import requests from bs4 import BeautifulSoup def get_resources(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') resources = [] for link in soup.find_all('a'): href = link.get('href') text = link.string if "data structure" in str(text).lower() or "计算机组成原理" in str(text): resources.append((text, href)) return resources url = "http://example.com/xidian_university_resource_page" resources_list = get_resources(url) for resource_name, resource_link in resources_list[:5]: print(f"{resource_name}: {resource_link}") ``` 此段Python代码展示了如何编写一个简单的网络爬虫来抓取特定网页上的链接,特别是那些名称中含有“Data Structure”或者中文表述“计算机组成原理”的链接作为可能的相关教育资源列表的一部分。请注意实际应用时需替换`url`变量中的地址为真实的网址,并遵守目标站点的服务条款与法律法规。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值