Google Earth Engine——全球地表温度日间产品的基础数据集是MODIS陆地表面温度数据(MOD11A2)

本文介绍了使用MODIS MOD11A2数据制作的月度5公里分辨率陆地表面温度产品,通过Weiss等人提出的填补方法处理了云覆盖导致的数据缺失。该数据集由Malaria Atlas Project团队提供,可用于气候研究和地理信息系统分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The underlying dataset for this daytime product is MODIS land surface temperature data (MOD11A2), which was gap-filled using the approach outlined in Weiss et al. (2014) to eliminate missing data caused by factors such as cloud cover. Gap-free outputs were then aggregated temporally and spatially to produce the monthly ≈5km product.

This dataset was produced by Harry Gibson and Daniel Weiss of the Malaria Atlas Project (Big Data Institute, University of Oxford, United Kingdom, [http://www.map.ox.ac.uk/] (http://www.map.ox.ac.uk/)).

该日间产品的基础数据集是MODIS陆地表面温度数据(MOD11A2),采用Weiss等人(2014)所述的方法填补缺口,以消除由云层等因素造成的数据缺失。然后将无间隙输出在时间和空间上进行汇总,以产生每月≈5公里的产品。

该数据集由Malaria Atlas项目的Harry Gibson和Daniel Weiss制作(英国牛津大学大数据研究所,[http://www.map.ox.ac.uk/] (http://www.map.ox.ac.uk/))。

Dataset Availability

2001-03-01T00:00:00 - 2015-06-01T00:00:00

Dataset Provider

Oxford Malaria Atlas Project

Collection Snippet

ee.ImageCollection("Oxford/MAP/LST_Day_5km_Monthly")

Resolution

5000 meters

Bands Table

NameDescriptionMin*Max*Units
MeanThe mean value of daytime land surface temperature for each aggregated pixel.-74.0363.87°C
FilledProportionA quality control band that indicates the percentage of each resulting pixel that was comprised of raw data (as opposed to gap-filled estimates).0100%

* = Values are estimated

引用:

Weiss, D.J., P.M. Atkinson, S. Bhatt, B. Mappin, S.I. Hay & P.W. Gething (2014) An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106-118.

代码:

var dataset = ee.ImageCollection('Oxford/MAP/LST_Day_5km_Monthly')
                  .filter(ee.Filter.date('2015-01-01', '2015-12-31'));
var daytimeLandSurfaceTemp = dataset.select('Mean');
var visParams = {
  min: -20.0,
  max: 50.0,
  palette: [
    '800080', '0000ab', '0000ff', '008000', '19ff2b', 'a8f7ff', 'ffff00',
    'd6d600', 'ffa500', 'ff6b01', 'ff0000'
  ],
};
Map.setCenter(-88.6, 26.4, 1);
Map.addLayer(
    daytimeLandSurfaceTemp, visParams, 'Daytime Land Surface Temperature');

Google Earth Engine (GEE) 中,MOD11A2数据集包含了每日的土地表温度 (LST) 和其它相关信息。其中LST_Day_1km波段表示的是1公里分辨率的日间陆地表面温度。对这种数据进行质量筛选通常是为了保证分析结果的准确性和可信度,常见的步骤包括: 1. **去除云覆盖**:使用`cloudMask()` 函数,它可以根据云掩码层 (如LC8_CLOUDS_FCover or MODIS_Cloud_Mask) 来过滤掉有云的日子。 ```python lst = lst.select('LST_Day_1km').multiply(0.01).mask(LC8_CLOUDS_FCover.select('CloudProbability') < 50) ``` 2. **检查异常值**:使用统计方法识别极端值,例如高斯滤波后计算平均值和标准差,然后保留一定范围内的数据。 ```python lst_cleaned = lst.focal_mean(radius=1000, maxPixels=1e6).where(lst - lst.mean() <= 3 * lst.std()) ``` 这里假设你已经设置了合适的窗口半径(radius)来处理1公里分辨率的数据。 3. **时间序列一致性**:如果需要,可以检查数据是否按预期变化(比如季节性),排除明显的漂移或不连续。 4. **地理空间完整性**:检查是否有缺失值或边界条件问题,确保数据范围符合预期地理区域。 5. **应用质量控制信息**:MOD11A2本身可能会提供一些质量控制指标(QCI),例如QCI Bands,可以结合这些信息进行进一步筛选。 完成这些步骤之后,你可以得到经过质量筛选后的LST_Day_1km数据,用于后续的地表温度分析或研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值