Google Earth Engine(GEE)——交叉相关/互相关ee.Algorithms.CrossCorrelation(以河北省ndwi和MNDWI为例)

本文利用Google Earth Engine(GEE)的ee.Algorithms.CrossCorrelation函数,探讨NDWI和MNDWI的交叉相关性。通过设置参数计算两图像的位移(deltaX, deltaY)、欧氏距离和相关系数,评估它们的注册质量和相关性。" 76911697,7218773,Scrapy框架详解与应用,"['爬虫', 'Python', 'Scrapy']
摘要由CSDN通过智能技术生成

关于交叉相关性的研究,这里GEE提供了一个函数就是关于两景影像的相关性的研究,本次实验通过NDWI和MNDWI进行分析,看两者的相关性如何,具体函数如下:

ee.Algorithms.CrossCorrelation(imageA, imageB, maxGap, windowSize, maxMaskedFrac)
提供两个(理论上)共同注册的图像之间的图像注册质量信息。输入是两幅具有相同带数的图像。该函数输出一个由四段信息组成的图像。前三个是距离:deltaX,deltaY,以及图像A中每个像素与图像B中具有最高相应相关系数的像素的欧氏距离。第四段是该像素的相关系数的值[-1 : +1]。

参数。
imageA(图像)。
第一幅图像,有N个波段。

imageB (图像)。
第二幅图像,必须有与imageA相同的频带数量。

maxGap(整数)。
一个像素在X或Y方向可以移动的最大距离。

windowSize (整数)。
要比较的窗口的大小。

maxMaskedFrac(浮点数,默认为0)。
相关窗口内允许被屏蔽的像素的最大比例。这个测试是在搜索区域内的每个偏移位置应用的。对于每个偏移,重叠的图像斑块被

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值