Google Earth Engine(GEE)——墨累全球潮汐湿地变化 v1 (1999-2019) 数据集

The Murray Global Tidal Wetland Change Dataset contains maps of the global extent of tidal wetlands and their change. The maps were developed from a three stage classification that sought to (i) estimate the global distribution of tidal wetlands (defined as either tidal marsh, tidal flat or mangrove ecosystems), (ii) detect their change over the study period, and (iii) estimate the ecosystem type and timing of tidal wetland change events.

The dataset was produced by combining observations from 1,166,385 satellite images acquired by Landsat 5 to 8 with environmental data of variables known to influence the distributions of each ecosystem type, including temperature, slope, and elevation. The image contains bands for a tidal wetland extent product (random forest probability of tidal wetland occurrence) for the start and end time-steps of the study period and a tidal wetland change product over the full study period (loss and gain of tidal wetlands).

Please see the usage notes on the project website. A full description of the methods, validation, and limitations of the data produced by this software is available in the associated scientific paper.

See also UQ/murray/Intertidal/v1_1/global_intertidal for global maps of the distribution of tidal flat ecosystems.

默里全球潮汐湿地变化数据集包含全球潮汐湿地范围及其变化的地图。这些地图是根据三阶段分类开发的,旨在 (i) 估计潮汐湿地(定义为潮汐沼泽、潮滩或红树林生态系统)的全球分布,(ii) 检测它们在研究期间的变化,以及 (iii) ) 估计潮汐湿地变化事件的生态系统类型和时间。

该数据集是通过将 Landsat 5 到 8 获取的 1,166,385 幅卫星图像的观测结果与已知会影响每种生态系统类型分布的变量的环境数据(包括温度、坡度和海拔)相结合而生成的。该图像包含研究期间开始和结束时间步长的潮汐湿地范围产品(潮汐湿地发生的随机森林概率)和整个研究期间的潮汐湿地变化产品的波段(潮汐湿地的损失和增益) .

请参阅项目网站 上的使用说明。相关科学论文中提供了对该软件产生的数据的方法、验证和限制的完整描述。

另请参阅 UQ/murray/Intertidal/v1_1/global_intertidal 了解全球潮滩生态系统分布图。

数据集可用性

1999-01-01T00:00:00Z - 2019-12-31T00:00:00

数据集提供者

默里/JCU

地球引擎

ee.ImageCollection("JCU/Murray/GIC/global_tidal_wetland_change/2019"

分辨率
30 米

波段

姓名描述
loss

为丢失位置设置为 1,否则被屏蔽。

lossYear

表示损失分析时间步长结束年份的整数(例如,19 = 2017-2019)。

lossType

损失类型

  • 2 - 滩涂
  • 3 - 红树林
  • 5 - 潮汐沼泽
gain

增益位置设置为 1,否则被屏蔽。

gainYear

表示增益分析时间步长结束年份的整数(例如,19 = 2017-2019)。

gainType

增益类型:

  • 2 - 滩涂
  • 3 - 红树林
  • 5 - 潮汐沼泽
twprobabilityStart

第一时间步(1999-2001)总体潮汐湿地类的随机森林协议。0 到 100 之间的整数。

twprobabilityEnd

最后一个时间步长(2017-2019)的总体潮汐湿地类别的随机森林协议。0 到 100 之间的整数。

代码:

var dataset = ee.Image('JCU/Murray/GIC/global_tidal_wetland_change/2019');

Map.setCenter(103.7, 1.3, 12);
Map.setOptions('SATELLITE');

var plasma = [
  '0d0887', '3d049b', '6903a5', '8d0fa1', 'ae2891', 'cb4679', 'df6363',
  'f0844c', 'faa638', 'fbcc27', 'f0f921'
];
Map.addLayer(
    dataset.select('twprobabilityStart'), {palette: plasma, min: 0, max: 100},
    'twprobabilityStart', false, 1);
Map.addLayer(
    dataset.select('twprobabilityEnd'), {palette: plasma, min: 0, max: 100},
    'twprobabilityEnd', false, 1);

var lossPalette = ['FE4A49'];
var gainPalette = ['2AB7CA'];
Map.addLayer(
    dataset.select('loss'), {palette: lossPalette, min: 1, max: 1},
    'Tidal wetland loss', true, 1);
Map.addLayer(
    dataset.select('gain'), {palette: gainPalette, min: 1, max: 1},
    'Tidal wetland gain', true, 1);

var viridis = ['440154', '414487', '2a788e', '22a884', '7ad151', 'fde725'];
Map.addLayer(
    dataset.select('lossYear'), {palette: viridis, min: 4, max: 19},
    'Year of loss', false, 0.9);
Map.addLayer(
    dataset.select('gainYear'), {palette: viridis, min: 4, max: 19},
    'Year of gain', false, 0.9);

// ecosystem type
var classPalette = ['9e9d9d', 'ededed', 'FF9900', '009966', '960000', '006699'];
var classNames =
    ['null', 'null', 'Tidal flat', 'Mangrove', 'null', 'Tidal marsh'];
Map.addLayer(
    dataset.select('lossType'), {palette: classPalette, min: 0, max: 5},
    'Loss type', false, 0.9);
Map.addLayer(
    dataset.select('gainType'), {palette: classPalette, min: 0, max: 5},
    'Gain type', false, 0.9);

Terms of Use

CC-BY-4.0

Citations:

  • Murray, N.J., Worthington, T.A., Bunting, P., Duce, S., Hagger, V., Lovelock, C.E., Lucas, R., Saunders, M.I., Sheaves, M., Spalding, M., Waltham, N.J., Lyons, M.B., 2022. High-resolution mapping of losses and gains of Earth's tidal wetlands. Sciencedoi:10.1126/science.abm9583

 

 

 

### 使用HSV模型在Google Earth Engine中实现图像边缘检测 为了在Google Earth Engine (GEE) 中使用HSV模型进行图像边缘检测,可以通过以下方法: #### 图像转换到HSV颜色空间 首先需要将RGB图像转换成HSV颜色空间。虽然`image.select(...).rgbToHsv()`不是一个有效的函数调用[^2],但是可以采用其他方式来进行这种转换。 ```python import ee from geetools import algorithms def rgb_to_hsv(image): """Converts an image from RGB to HSV color space.""" r = image.select('R') g = image.select('G') b = image.select('B') max_rgb = image.reduce(ee.Reducer.max()) min_rgb = image.reduce(ee.Reducer.min()) v = max_rgb delta = max_rgb.subtract(min_rgb) s = delta.divide(max_rgb).multiply(100) h = ee.Image().expression( 'select((r-g)/(delta), 0)', { 'r': r, 'g': g, 'b': b, 'max_rgb': max_rgb, 'min_rgb': min_rgb, 'delta': delta } ).where(delta.eq(0), 0) hsv_image = ee.Image.cat([h, s, v]).rename(['H', 'S', 'V']) return hsv_image ``` 此代码片段定义了一个自定义函数用于将输入的多光谱遥感影像从红绿蓝(RGB)色彩模式转变为色调(Hue),饱和度(Saturation),亮度(Value)(即HSV)[^1]。 #### 边缘检测操作 一旦有了HSV表示形式,则可以根据特定的应用需求选择合适的边缘检测算子应用于某个或某些通道上。常见的做法是对V(Value/明度)通道执行Canny或其他类型的梯度运算来获取边界信息。 ```python def canny_edge_detection(hsv_image): value_band = hsv_image.select('V').toFloat() edges = value_band.cannyEdgeDetector(threshold=0.8, sigma=1) return edges.rename('edges') ``` 上述Python脚本实现了基于HSV模型下的边缘检测过程,在这里选择了Canny Edge Detector作为具体的边缘探测器,并将其作用于转换后的HSV图像中的V分量之上。 请注意,实际应用时可能还需要考虑更多因素如噪声去除、阈值调整等以获得更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值