我目前正在对为期两年的 Sentinel-1 ee.ImageCollections 进行标准偏差缩减,以测量每个像素的时间变化。然而,输出 ee.Image 受到雨区噪声引起的异常值的影响(C 波段雷达对这些极端天气很敏感,并导致严重的附带反向散射减少)。为了减轻这种影响,我想在应用 ee.Reducer 之前从我的 ee.ImageCollection 中删除异常值(在时间维度上)。例如,我想测试在计算标准偏差之前删除最小和最大像素值时会发生什么。有没有办法做到这一点?
在没有离群值的情况下计算均值的首选方法是使用 ee.Reducer.intervalMean()。计算 2-98 个百分位数范围内的值的平均值以去除异常值。如果您只想删除最小值/最大值,请将这些值从集合中屏蔽掉,然后应用reducer即可。
函数:
ee.Reducer.intervalMean(minPercentile, maxPercentile, maxBuckets, minBucketWidth, maxRaw)
这个函数的主要目的就是计算影响波段内指定百分比之间的平均值
Creates a Reducer to compute the mean of all inputs in the specified percentile range. For small numbers of inputs (up to maxRaw) the mean will be computed directly; for la
Google Earth Engine(GEE)——ee.Reducer.intervalMean()计算没有离群值得异常值以及去除2%-98%异常值
最新推荐文章于 2024-03-20 12:18:29 发布
本文探讨了如何利用Google Earth Engine(GEE)的ee.Reducer.intervalMean()方法来计算Sentinel-1图像集合的平均值,以减少由极端天气造成的噪声影响。通过计算2%-98%百分位数范围内的值的平均值,可以有效地去除异常值。此外,介绍了该函数的参数和工作原理。
摘要由CSDN通过智能技术生成