遥感应用中常用的23个植被指数公式大全和GEE目前最常用Landsat影像时间和名称

本文介绍了多个遥感卫星如Landsat和Sentinel-2的传感器数据,这些数据涵盖了从1982年至今的时间段。文章强调了植被指数(VIs)在农业和其他应用中的重要性,列举了23种不同的VIs,包括ARVI、EVI等,并提到了它们的数学表达式和所涉及的光谱带。文章还引用了相关研究,概述了VIs的发展和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

影像集合,具体包含名称、传感器、时间和引用代码
Sensor Dataset.availability Collection.ID
Landsat-4 TM 22/08/1982 - 24/06/1993 LANDSAT/LT04/C02/T1_L2
Landsat-5 TM 16/03/1993 – 05/05/2012 LANDSAT/LT05/C02/T1_L2
Landsat-7 ETM+ 01/01/1999-present LANDSAT/ LC08 /C02/T1_L2
Landsat-8 OLI 11/04/2013- present LANDSAT/LE07/C02/T1_L2
Landsat-9 OLI-2 31/10/2021- present LANDSAT/LC09/C02/T1_L2
Sentinel-2 (MSI) 28/03/2017-present COPERNICUS/S2_SR_HARMONIZED
Landsat和Sentinel-2的比较以及光谱带的位置。数字表示每个传感器所考虑的光谱带的数量
https://www.cbedai.net/xg

指数:
VIs允许与植被的不同参数或变量发生定量和功能关系。23个VIs,这些VIs通常用于农业应用(Bannari 2009),(Xue 2017)。

这些VIs的名称、它们的数学表达方式以及它们的缩写见以下列表:
1:ARVI:抗大气污染植被指数*。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在ARVI、ATSAVI、EVI、EVI2、OSAVI、SAVI、ATSAVI和WDRVI中,即所有那些除了频谱带之外还需要一些调整变量的VI。

在VI方程中使用的光谱带的缩写
Abreviatura Nombre
B Azul/Blue
G Verde/Green
R Rojo/Red
RE Borde Rojo/Red edge
NIR Infrarrojo Cercano /Near infrared
SWIR1 Infrarrojo de onda corta 1/Shortwave infrared 1
SWIR2 Infrarrojo de onda corta 2/Shortwave infrared 2

参考文献:
References
Bannari, Bonn & Huete, Morin. 2009. A Review of Vegetation Indices. Remote Sensing Reviews, 13(1–2), 95–120. https://doi.org/10.1080/02757259509532298.
Xue, Su. 2017. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors. https://doi.org/10.1155/2017/1353691.

<think>好的,我现在要处理用户关于使用Google Earth Engine(GEE)计算遥感植被指数的代码示例的查询。首先,我需要回顾用户提供的引用资料,尤其是引用[1]、[2][3],这些内容涉及GEEPIE-Engine的波段计算、指数计算等。 用户的问题明确需要代码示例,因此我需要确保提供的代码符合GEE的语法规范,并且涵盖常见的植被指数,如NDVI、EVI等。根据引用[1],EVI的计算公式是使用表达式波段计算的例子,所以可能需要展示如何用表达式来实现。此外,引用[2]提到了多个指数如NDVI、NDWI、IBI等的计算,这可以作为参考来扩展示例。 接下来,我需要考虑代码的结构。通常,GEE的代码流程包括选择影像集合、过滤日期区域、定义计算函数、应用函数到影像上、后可视化或导出结果。用户可能需要一个完整的示例,从数据加载到结果展示,所以代码应包括这些步骤。 还要注意用户提到的引用[3]中PIE-Engine的示例,虽然用户主要问的是GEE,但可能需要指出PIE-Engine的中文支持国产数据,但用户当前的问题是关于GEE的,所以重点应放在GEE的代码上。 现在需要验证各个植被指数公式是否正确。例如,NDVI的计算是(NIR - Red)/(NIR + Red),而EVI的公式则涉及更多参数,如引用[1]中的例子。需要确保这些公式在代码中正确表达,并对应正确的波段名称,例如Landsat 8的波段名称是'B5'代表NIR,'B4'代表Red等。 另外,可能需要考虑影像预处理步骤,如云掩膜,但用户可能只需要核心的指数计算部分,所以是否包含云处理取决于示例的复杂度。如果保持简洁,可能先省略,但如果有引用提到相关步骤,比如引用[2]中的图像归一化函数,可能需要提及或简单包含。 后,生成相关问题需要考虑用户可能的后续需求,比如不同卫星数据的处理、指数应用分析、批量处理等,这有助于用户进一步探索。</think>以下是在Google Earth Engine (GEE) 中计算常见遥感植被指数的代码示例,结合Landsat 8卫星数据实现: ### 1. NDVI(归一化植被指数) ```javascript // 定义研究区域时间范围 var roi = ee.Geometry.Point([116.38, 39.90]); // 北京坐标示例 var startDate = '2022-05-01'; var endDate = '2022-10-01'; // 获取Landsat 8影像集 var l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate(startDate, endDate) .filterBounds(roi); // 定义NDVI计算函数 var addNDVI = function(image) { var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI'); return image.addBands(ndvi); }; // 应用函数并选择影像 var ndviImage = l8.map(addNDVI).sort('system:time_start', false).first(); Map.addLayer(ndviImage.select('NDVI'), {min:0, max:1, palette: ['red','yellow','green']}, 'NDVI'); ``` 公式实现:$$ \text{NDVI} = \frac{\text{NIR} - \text{Red}}{\text{NIR} + \text{Red}} $$[^2] ### 2. EVI(增强型植被指数) ```javascript var addEVI = function(image) { var evi = image.expression( '2.5 * (NIR - RED) / (NIR + 6*RED - 7.5*BLUE + 1)', { 'NIR': image.select('SR_B5'), 'RED': image.select('SR_B4'), 'BLUE': image.select('SR_B2') }).rename('EVI'); return image.addBands(evi); }; var eviImage = l8.map(addEVI).first(); print(eviImage.select('EVI')); ``` 公式实现:$$ \text{EVI} = 2.5 \times \frac{\text{NIR} - \text{Red}}{\text{NIR} + 6 \times \text{Red} - 7.5 \times \text{Blue} + 1} $$[^1] ### 3. 批量计算多个指数 ```javascript // 定义复合计算函数 var addIndices = function(image) { var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI'); var ndwi = image.normalizedDifference(['SR_B3', 'SR_B5']).rename('NDWI'); return image.addBands(ndvi).addBands(ndwi); }; // 生成时间序列数据集 var indicesCollection = l8.map(addIndices); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值