PIE-Engine数据:1961–2018年月中国站点尺度天然径流量估算数据集

简介

中国站点尺度天然径流量估算数据集,包括全国多个水文站1961–2018年月值天然径流量(数据将继续更新),数据为ASCII格式。该数据是基于VIC(The Variable Infiltration Capacity)分布式水文模型,结合参数不确定分析、流向校正和统计后处理等数据质量方法重建的,是中国长时序、高质量与时间连续的天然河川径流资料。研究中涉及到的全国水文站分别约有83%和56%水文站的NSE值、KGE值大于0.70。偏差校正后全国站点平均偏差百分比从约17%降至2%,NSE与KGE平均值分别为0.85与0.91。该天然径流数据集质量较高,可以为变化环境下水文过程模拟与水资源综合管理提供重要基础数据与科学服务。前言 – 人工智能教程

中国天然径流量格点数据集CNRD v1.0(1961-2018)是一套长时序、全覆盖、高质量、时空连续的天然河川径流资料,可用于长时序径流资料重建,为中国水资源研究提供了种重要参考资料。通过与两套全球径流格点数据集ISIMIP和GRUN比较,发现CNRD v1.0数据集的径流空间分布上过渡更加连续,且在表示中国复杂地形和气候理分划下的水资源空间分布方面优于全球径流数据集。

波段和属性

名称类型空间分辨率(度)无效值
天然径流Float320.05-9999

date

string

影像日期

代码

/*color:#4b0082*/
var geometry0 = pie.Geometry.Polygon([
    [
        [
            120.73529102736825,
            47.89704739909246
        ],
        [
            126.12957813674893,
            47.89704739909246
        ],
        [
            126.12957813674893,
            47.185083885780415
        ],
        [
            120.73529102736825,
            47.185083885780415
        ],
        [
            120.73529102736825,
            47.89704739909246
        ]
    ]
], null);

var imageCollection0 = pie.ImageCollection('TPDC/CNRD_V1_001DEG').filterDate("2012-01-01","2013-01-01")
                  .filterBounds(geometry0).select("B1").mosaic();
                  print(imageCollection0)
var imageCollection1 = pie.ImageCollection('TPDC/CNRD_V1_005DEG').filterDate("2000-01-01","2001-12-31")
                  .filterBounds(geometry0).select("B1");
Map.addLayer(imageCollection0,{min:0,max:40,palette:['#042333','#2c3395','#744992','#b15f82','#eb7958','#fbb43d','#e8fa5b']},"天然径流0.5");
Map.addLayer(imageCollection1,{min:0,max:30,palette:['#042333','#2c3395','#744992','#b15f82','#eb7958','#fbb43d','#e8fa5b']},"天然径流1.0");



                                                         

 结果

 数据引用:

1.缪驰远, 苟娇娇. (2022). 中国天然径流量格点数据集CNRD v1.0(1961-2018). 国家青藏高原科学数据中心. [https://doi.org/10.11888/Atmos.tpdc.272864.](https://doi.org/10.11888/Atmos.tpdc.272864) [https://cstr.cn/18406.11.Atmos.tpdc.272864.](https://cstr.cn/18406.11.Atmos.tpdc.272864).
2.Miao, C., Gou, J. (2022). CNRDv1.0: the China natural runoff dataset version 1.0(1961-2018). National Tibetan Plateau Data Center. [https://doi.org/10.11888/Atmos.tpdc.272864.](https://doi.org/10.11888/Atmos.tpdc.272864) [https://cstr.cn/18406.11.Atmos.tpdc.272864.](https://cstr.cn/18406.11.Atmos.tpdc.272864)

文章引用:

1.Gou, J.J., Miao, C.Y., Duan, Q.Y., Tang, Q.H., Di, Z.H., Liao, W.H., Wu, J.W., & Zhou, R. (2020). Sensitivity analysis-based automatic parameter calibration of the VIC model for streamflow simulations over China. Water Resources Research, 56, 1-19.
2.Gou, J.J., Miao, C.Y., Samaniego, L., Xiao, M., Wu, J.W., & Guo, X.Y. (2021). CNRD v1.0: a high-quality natural runoff dataset for hydrological and climate studies in China. Bulletin of the American Meteorological Society, 102(5), E929-E947.
3.Miao, C.Y., Gou, J.J., Fu, B.J., Tang, Q.H., Duan, Q.Y., Chen, Z.S., Lei, H.M., Chen, J., Guo, J.L., Borthwick, A.G.L., Ding, W.F., Duan, X.W., Li, Y.G., Kong, D.X., Guo, X.Y., & Wu, J.W. (2022). High-quality reconstruction of China’s natural streamflow. Science Bulletin, 67(5), 547-556.

 网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值