GEE案例——指定区域纯净森林提取分析(红和近红外波段)阈值法提取森林面积

本教程展示了如何运用Google Earth Engine(GEE)的Otsu方法(大津法)来提取特定区域的纯净森林。通过近红外和红波段指数,结合reduceToVectors函数,对遥感影像进行处理,实现森林区域的精确提取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 本教程主要是利用影像波段的近红外和红波段的指数作为森林区域的筛选,利用大津法进行指定区域的森林夏季的遥感影像的红波段和近红外波段。

简介:

提取森林范围是遥感影像处理中的一项常见任务。以下是可能用到的一些步骤:

1. 数据预处理:首先,需要进行数据预处理,包括去除云、阴影和大气干扰等。

2. 影像分类:利用监督分类或非监督分类方法,将图像中的像素点分为不同的类别。其中,森林区域应该是其中的一个类别。

3. 像元连接:根据分类结果,将相邻的同一类别像素点连接在一起,形成一个面状的森林区域。可以通过二值化、形态学操作等方法实现像元连接。

4. 精化处理:由于影像分类存在一定误差,提取出的森林范围可能包含一些无关区域。因此,需要进行精化处理,去除非森林区域。

总之,提取森林范围需要结合遥感影像处理技术和森林学专业知识,具体实现方式需要根据实际情况选择合适的方法。

本教程主要是利用影像波段的近红外和红波段的指数作为森林区域的筛选,利用大津法进行指定区域的森林夏季的遥感影像的波段。

方法

Otsu方法是一种图像分割算法,旨在将图像分为两个类别,使图像的类间方差最大化。该算法基于一个被称为“类内方差”和“类间方差”的概念。类内方差衡量同一类内像素值的差异程度,类间方差衡量不同类别之间像素值的差异程度。Otsu方

<think>好的,用户的问题是关于在Google Earth Engine (GEE)上进行森林碳储量遥感估测时需要提取哪些特征参数以及如何进行参数优化。我需要先回忆一下相关的遥感特征参数,然后考虑GEE平台的支持情况。 首先,森林碳储量估测通常使用光学遥感数据,比如Landsat或Sentinel-2,以及雷达数据如Sentinel-1。特征参数可能包括光谱特征,比如各种植被指数(NDVI、EVI等),还有纹理特征,比如灰度共生矩阵(GLCM)的对比度、同质性等。此外,地形数据如高程、坡度、坡向也可能被用作辅助参数。雷达的后向散射系数极化信息也可能有用。 接下来是特征参数的优选方。常见的优化方有皮尔逊相关系数分析,用于筛选与地面实测数据相关性高的特征。还有逐步回归、LASSO回归等机器学习中的特征选择方。主成分分析(PCA)可以用来降维,减少冗余。随机森林XGBoost这类模型本身可以提供特征重要性评分,帮助选择重要参数。 然后需要结合GEE的具体功能。GEE提供了大量数据集,比如Landsat、Sentinel系列,以及DEM数据。用户可以使用GEE的API提取这些数据,计算植被指数纹理特征。在参数优化方面,GEE支持JavaScriptPython,可以集成机器学习库如ee.Classifier,进行特征重要性评估。 可能还需要考虑地面实测数据的获取,因为特征优选需要依赖这些数据进行监督学习。此外,时间序列分析也可能重要,比如使用多时相的NDVI来捕捉植被生长变化,从而提高模型精度。 用户可能的问题可能涉及具体如何在GEE中实现这些特征提取,比如代码示例,或者如何验证模型精度。此外,可能想知道不同传感器数据的比较,比如光学雷达数据哪个更有效,或者如何处理高维特征带来的过拟合问题。 需要确保回答的结构清晰,分点列出特征参数优化方,并给出GEE中的具体操作建议。同时,根据用户提供的引用,虽然引用的文献是关于目标姿态估计FPGA实现的,可能与当前问题无关,但可能需要注意是否有其他更相关的引用可用,但用户提供的可能没有,所以暂时忽略这些引用或仅作为格式示例。 最后,生成相关问题时要围绕特征参数选择、优化方GEE工具使用、模型构建等方面展开,帮助用户进一步探索。</think>在Google Earth Engine (GEE) 上进行森林碳储量遥感估测时,特征参数的选择与优化是模型精度的关键。以下是特征提取与参数优化的技术路径: --- ### 一、核心特征参数类型 1. **光谱特征** - 植被指数:$NDVI = \frac{NIR - Red}{NIR + Red}$,$EVI$,$SAVI$(土壤调整植被指数) - 波段反射率:可见光(蓝、绿、)、近红外(NIR)、短波外(SWIR) - 光谱衍生指标:波段、叶绿素吸收特征 2. **纹理特征** - 基于灰度共生矩阵(GLCM)的统计量:对比度、熵、相关性、同质性 - 计算方: $$ \text{Contrast} = \sum_{i,j} |i-j|^2 \cdot P(i,j) $$ 其中$P(i,j)$为像素值$i$$j$的联合概率分布[^1]。 3. **地形特征** - 高程(DEM)、坡度、坡向、地形湿度指数(TWI) 4. **雷达特征**(如Sentinel-1) - 后向散射系数(VV/VH极化)、极化分解参数 5. **时间序列特征** - 多时相NDVI变化率、季节积分(如年最大NDVI) --- ### 二、参数优化方 1. **相关性筛选** - 计算各特征与地面实测碳储量的皮尔逊相关系数,保留$|r| > 0.3$的特征[^2]。 2. **机器学习特征重要性评估** ```python # GEE中随机森林特征重要性示例 classifier = ee.Classifier.smileRandomForest(50).train( features=trainingData, classProperty='carbon_stock', inputProperties=featureList ) importance = classifier.explain().get('importance') ``` 输出特征重要性排序,剔除重要性低于阈值的参数。 3. **降维技术** - 主成分分析(PCA):将高光谱数据压缩至前3-5个主成分 - 波段比值:如$SWIR/NIR$减少光照差异影响 4. **正则化方** - LASSO回归:通过$L1$正则化自动实现特征选择 $$ \min_{\beta} \left( \| y - X\beta \|^2 + \lambda \|\beta\|_1 \right) $$ --- ### 三、GEE实现流程 1. **数据准备** ```javascript var landsat = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") .filterDate('2020-01-01', '2020-12-31') .median(); var dem = ee.Image("NASA/NASADEM_HGT/001"); ``` 2. **特征计算** ```javascript // 计算NDVI var ndvi = landsat.normalizedDifference(['B5', 'B4']).rename('NDVI'); // 计算坡度 var slope = ee.Terrain.slope(dem); // 纹理特征(以NDVI为例) var glcm = ndvi.glcmTexture({size: 3}); ``` 3. **特征优选与建模** - 使用`ee.Classifier`训练随机森林/XGBoost,导出特征重要性 - 通过交叉验证评估特征组合性能(如RMSE最小化) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值