此部分主要的目的是在进行森林生物量反演前生物量影像的预处理,这里需要
简介
1. Landsat数据集:
Landsat数据集是由美国地质勘探局(USGS)主导的一种卫星遥感数据,用于地球表面的监测和观测。Landsat卫星通过可见光和红外波段采集图像,包括8个波段。Landsat数据集有两个传感器:Landsat 7 ETM+(Enhanced Thematic Mapper Plus)和Landsat 8 OLI(Operational Land Imager)。
加载和展示Landsat数据集的流程如下:
- 导入必要的Python库,如rasterio和matplotlib。
- 打开Landsat数据集的遥感影像文件,使用rasterio库的open函数。
- 读取和处理影像的波段数据,可以使用rasterio库的read和mask函数。
- 将波段数据进行图像显示,可以使用matplotlib库的imshow函数。
2. Sentinel-2数据集:
Sentinel-2数据集由欧洲航天局(ESA)的Copernicus计划提供,用于监测和管理地球表面的环境变化。Sentinel-2卫星通过多光谱传感器采集图像,包括13个不同的波段,具有更高的空间和时间分辨率。
加载和展示