NASA数据集——2017 年阿拉斯加和加拿大上空彩色红外图像中的 AirSWOT 水掩模数据集

简介

ABoVE: AirSWOT Water Masks from Color-Infrared Imagery over Alaska and Canada, 2017

摘要 本数据集提供了:1)用于未来从共存的 AirSWOT Ka 波段干涉测量数据中提取水面高程 (WSE) 的保守开放水域掩膜;2)沿 NASA 北极-北方脆弱性实验 (ABoVE) 基本飞行线路大于 40 平方米的高分辨率(1 米)水体分布图。 掩膜和地图由飞行期间收集的单个图像生成的地理参照三波段正射影像图和基于归一化差异水指数(NDWI)的半自动水体分类算法得出。 利用人工选择的地面控制点(GCPs)对图像瓦片进行了地理坐标参考。与人工数字化的开放水域边界进行比较,开放水域分类的总体准确率为 98.0%。使用安装在 B200 飞机上的 Cirrus Designs 数字摄像系统 (DCS),从大约 8-11 千米的高度在以下区域收集绿色、红色和近红外 (NIR) 数字图像: 萨斯喀彻温河、萨斯卡通、伊努维克、育空河(包括育空平原)、萨加瓦尼尔克托克河、北极沿海平原、老鸦平原、和平-阿萨巴斯卡三角洲、奴隶河、阿萨巴斯卡河、耶洛奈夫、大奴湖、麦肯齐河和三角洲、达林湖以及其他选定地点。 在加拿大和阿拉斯加的两次飞行活动中,对大多数地点进行了两次成像,大致为东南-西北和西北-东南方向,相隔时间长达一个月。以三种数据文件格式提供了 330 个 ABoVE 网格单元(ChxxCvxx)的水体掩蔽图:1 米分辨率 GeoTIFF(+.tif)文件、转换为 Shapefiles(.shp)文件和转换为谷歌地球格式(.kml)文件。 原始正射影像的特征(覆盖范围、质量和云标志、地理参照数据)和图像处理元数据分别以逗号分隔(.csv)文件、转换为 Shapefile(.shp)文件和转换为 Google Earth 格式(.kml)文件的形式提供。

 该数据集提供了一个保守的开放水域掩模,用于未来从共存的 AirSWOT Ka 波段干涉测量数据中提取水面高程(WSE),并提供了沿 NASA 北极-北方脆弱度实验(ABoVE)基础飞行线路大于 40 平方米的高分辨率(1 米)水体分布图。 掩膜和地图由飞行期间收集的单个图像生成的地理参照三波段正射影像图和基于归一化差异水指数(NDWI)的半自动水体分类算法得出。 利用人工选择的地面控制点(GCPs)对图像瓦片进行了地理坐标参考。与人工数字化的开放水域边界进行比较,开放水域分类的总体准确率为 98.0%。绿色、红色和近红外(NIR)数字图像由安装在 B200 飞机上的 Cirrus Designs Digital Camera System (DCS) 从大约 8-11 千米的高度在以下区域收集:萨斯喀彻温河、萨斯卡通、伊努维克、育空河(包括育空平原)、萨加瓦尼尔克托克河、北极沿岸平原、老鸦平原、和平-阿萨巴斯卡三角洲、奴隶河、阿萨巴斯卡河、黄刀、大奴湖、大湖。在加拿大和阿拉斯加的两次飞行活动中,大多数地点都拍摄了两次图像,大致为东南-西北和西北-东南方向,间隔时间长达一个月。项目:北极-北方脆弱性实验 北极-北方脆弱性实验(ABoVE)是美国国家航空航天局(NASA)陆地生态计划的一项实地活动,于 2016 年至 2021 年期间在阿拉斯加和加拿大西部进行。ABoVE 的研究将基于实地的过程级研究与机载和卫星传感器获得的地理空间数据产品联系起来,为提高分析和建模能力奠定了基础,而分析和建模能力是理解和预测生态系统响应及社会影响所必需的。

数据特征

空间覆盖范围:阿拉斯加和加拿大

上方参考位置:

 域:核心 ABoVE

 州/地区: 阿拉斯加和加拿大阿拉斯加和加拿大

 空间分辨率:数据以 1m x 1m 像素大小提供。

时间覆盖范围:2017-07-09 至 2017-08-17

时间分辨率:每个地点一至三个集合。

研究区域(所有经纬度均以十进制度表示)

SiteWesternmost LongitudeEasternmost LongitudeNorthernmost LatitudeSouthernmost Latitude
Alaska and Canada-149.254166-98.6438669.47444446.854333

数据信息

该数据集有 330 个 GeoTIFF (.tif) 格式的数据文件、4 个 shapefiles (.shp) 文件(以 .zip 文件夹提供)和 1 个逗号分隔文件(.csv)。另外还有 333 个 .kmz 格式的配套文件。

File namesDescriptions
DCS_YYYYMMDD_S##*_ChZZZvZZZ_V#.tifOrthomosaics (330 files) collected between July 9 and August 17, 2017 in GeoTIFF format (.tif) and clipped to the ABoVE “c-level” grid.
DCS_Index.zipPolygon shapefile that shows the areas of all the orthomosaics.
ground_control_points_map.zipThe ground control points (GCPs) used to georeference the orthomosaics, manually digitized from the proprietary Digital Globe EV-WHS image service. The coordinates for the points are found under attributes mapX and mapY.
ground_control_points_source.zipThe ground control points (GCPs) as they appeared in the original raster files. The coordinates for the points are found under attributes sourceX and sourceY.
ground_control_points_source_transformed.zipThe ground control points (GCPs) after warping transformation. The coordinates for the points are found under attributes Source_tX and Source_tY.
ground_control_points.csvThis file is provided for easy georeferencing of the orthomosaics and provides the same data as the shapefiles, however, the variable names (column names) are provided in a longer format. The file provides the ground control points (GCPs), manually digitized from the proprietary Digital Globe EV-WHS image service. The coordinates for the points are found under attributes longitude_map and latitude_map.
     Companion files
DCS_YYYYMMDD_S##*_ChZZZvZZZ_V#.kmzThe 330 orthomosaic files are provided in .kmz format for viewing in Google Earth. There is one *.kmz file for each *.tif file.

ground_control_points_map.kmz

ground_control_points_source.kmz

ground_control_points_source_transformed.kmz

Three of the shapefiles are provided in .kmz format for viewing in Google Earth.

矢量信息Shapefiles (.shp)

 

AttributeDescription
AboveGridABoVE Grid tile, based on convention
OrigRasterOriginal raster file name before being clipped to ABoVE grid.  All rasters sharing a common “OrigRaster” value were warped to the same affine transformation
DateImage acquisition date
GCP_CountTotal number of GCPs contained within raster boundaries. A value of zero indicates either there is no GCP-based warp applied to the raster, or the warp didn’t use any GCPs ontained within the raster boundaries. This column sums to the number of GCPs used for the entire dataset (303)
Total_GCPTotal number of GCPs used to warp the original raster file. This number will always be greater than or equal to GCP_count.  A value of zero indicates there is no GCP-based warp applied to the raster and the accuracy can be assumed to be less than 5m
Avg_diffAverage difference in meters between the GCPs in the final raster file (transformed source coordinate, as found in the GCP shapefiles) and their corresponding “actual” coordinate given in the DigitalGlobe image service.  A value of -9999 indicates that there are no GCPs contained within the raster bounds
Min_diffMinimum difference for the above
Max_diffMaximum difference for the above

 方法

这些数据旨在验证地表水范围,以帮助解释 AirSWOT ABoVE 项目中的 AirSWOT Ka 波段雷达回波。AirSWOT 的核心是 Ka 波段 SWOT 现象机载雷达 (KaSPAR)。该雷达收集两段跨轨道干涉测量数据--分别在天底至 1 千米之间和 1 千米至 5 千米之间--可用于获取厘米级的水面地形图。此外,KaSPAR 还有一个沿轨干涉仪,可用于测量水面的时间相关性以及水的径向速度。

 数据处理过程

正射影像图由 DCS 采集的单个图像生成(见图 1 示例)。数据使用从 Digital Globe EV-WHS 网络地图服务器手动数字化的 303 个地面控制点 (GCP) 进行地理参照。在 ArcMap 10.6 中,使用一阶多项式(仿射)变换以及源和地图 GCP 之间的平均值和均方根平均值对图像进行了扭曲处理。在加拿大和阿拉斯加的两次飞行活动中,对大多数地点进行了两次成像,大致从东南-西北延伸到西北-东南。

正射影像图被重新投影到 NAD 1983 加拿大阿尔伯斯等面积圆锥曲线上,并重新采样为 1m x 1m 像素大小。文件被剪切为 ABoVE 标准参考网格 C(Loboda 等人,2017 年)。栅格产品已进行地理坐标标定和正射校准,但未进行辐射校准。

地理参照和精度评估

这些正射影像图是通过 Agisoft Photoscan 软件,利用飞机上的定位数据(IMU 和 GPS)制作的。  最初的产品在不同日期拍摄的相同地面点之间存在 0-120 米的地理定位偏移。  造成这种高不确定性的原因包括:线性飞行路径造成的侧边图像重叠较少或根本不存在、定位数据的不确定性、云层的影响以及所使用的相机系统老化。  通过这种方法获得的初始地理定位精度对位置上的微小误差非常敏感,不足以与同时拍摄的 AirSWOT 雷达图像进行比较。

为了解决这个问题,我们使用从专有的 Digital Globe EV-WHS 图像服务中手动数字化的 303 个地面控制点(GCP),对原始 38 幅正交合成图中的 29 幅进行了地理参照。  该服务提供空间分辨率在 1 米或更高数量级的正射影像(EnhancedView Web Hosting Service,2018 年)。  作为该服务输入的四颗运行中的数字地球卫星(Satellite Information, 2018)的第 90 百分位数地理定位误差范围为 3.0 米(GeoEye-1)至 6.5 米(Worldview-1)。  GCP 被选为可在正射影像和数字地球图像服务中识别的持久地貌特征。  这些地物包括道路交叉口,以及在基本无人居住的研究区域内的树丛边界。  在 ArcMap 10.6 中使用一阶多项式(仿射)变换对图像进行扭曲处理,并计算源点和地图 GCP 之间的平均距离和均方根平均距离。  如果这些数字相差超过 20%,则将相应图像手动分割成两个或多个部分,并使用相应的 GCP 子集重新应用翘曲。  这些操作是使用与 DigitalGlobe 服务相同的地理坐标系统(WGS-84)对原始正射影像进行的。  然后,将正射影像图投影并分割到 ABoVE 网格中,形成本档案中的 330 个文件。  如果正射影像图与 DigitalGlobe 图像的偏差始终小于 5 米,则假定该正射影像图尽可能精确,不应用基于 GCP 的翘曲处理。

地理坐标参照后,进行了统计计算。  90% 的 GCP 与 DigitalGlobe 的偏差在 13.28 米(13.28 像素)或以下。  与 DigitalGlobe 偏移的其他统计数据包括:最小值:0.30 米,最大值:49.76 米,平均值:0.30 米:49.76米,平均值5.97米,标准偏差5.70m.  鉴于至少 90% 的 DigitalGlobe 图像服务的地理定位误差在 6.5m 或以下[3],我们产品的水平精度在 90% 的人工地理坐标正射影像中最多为 19.8m,个别精度可作为 shapefile 属性提供。

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ABoVE_Airborne_AVIRIS_NG_V2_2009B",
    cloud_hosted=True,
    bounding_box=(-166.65, 52.16, -103.24, 71.38),
    temporal=("2017-06-24", "2019-08-04"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
# Granules found: 250
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Kyzivat, E.D., L.C. Smith, L.H. Pitcher, J. Arvesen, T.M. Pavelsky, S.W. Cooley, and S. Topp. 2018. ABoVE: AirSWOT Color-Infrared Imagery Over Alaska and Canada, 2017. ORNL DAAC, Oak Ridge, Tennessee, USA. ABoVE: AirSWOT Color-Infrared Imagery Over Alaska and Canada, 2017, https://doi.org/10.3334/ORNLDAAC/1643

数据下载地址

ABoVE: AirSWOT Color-Infrared Imagery Over Alaska and Canada, 2017

网址推荐

 0代码在线构建地图应用
https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习
https://www.cbedai.net/xg

 

  • 11
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 要训练自己的数据集,我们首先需要下载Mask R-CNN模型的代码和预训练的权重。我们可以从GitHub上的Mask R-CNN项目获得代码。将代码克隆到本地后,我们可以安装所需的依赖库。 接下来,我们需要准备我们自己的数据集数据集应包含图像和相应的实例分割标注。标注可以是标记每个实例的掩码或边界框。确保标注与图像具有相同的文件名,并将它们保存在单独的文件夹。 一旦准备好数据集,我们需要将它们进行预处理,以便能够与Mask R-CNN模型兼容。为此,我们可以编写一个数据加载器,该加载器将图像和标注转换为模型可以处理的格式。 在准备好数据集和数据加载器后,我们可以开始训练模型。通过运行训练脚本,我们可以指定训练数据集的路径、模型的配置以及需要的其他参数。模型将针对给定的数据集进行迭代,逐步学习实例分割任务。 训练过程可能需要一定时间,具体取决于数据集的大小和复杂性。我们可以利用GPU加速来加快训练速度。 一旦训练完成,我们可以使用自己的数据集进行图像实例分割。导入训练好的模型权重,我们可以提供测试图像并获得模型对实例的分割结果。 总之,训练自己的数据集以进行图像实例分割需要下载Mask R-CNN代码和预训练权重。然后,准备和预处理数据集,并编写数据加载器。使用训练脚本进行模型训练,并在训练完成后使用自己的数据集进行图像实例分割。 ### 回答2: 要训练自己的数据集,首先需要下载并设置合适的数据集。可以从各种资源寻找与自己目标相关的图像数据集,并确保数据集包含正确的标注信息,例如每个图像的实例分割掩模。 接下来,我们需要安装并配置Mask R-CNN的开发环境。可以通过使用Python包管理工具pip来安装所需依赖,并下载Mask R-CNN代码库。然后,根据具体的数据集,需要进行一些配置调整,例如修改配置文件相关的参数设置,如类别数目、训练和验证数据集的路径等等。 接下来,将数据集准备成模型可接受的格式。一般来说,我们需要将数据集划分为训练集和验证集,并提供每个图像的标注信息。可以使用一些处理工具来将数据集进行预处理,将图像转换为模型可接受的格式,并将标注信息保存为对应的掩模图像。 接下来,我们可以开始训练模型了。通过运行相应的训练脚本,可以开始构建并训练Mask R-CNN模型。训练过程会根据指定的配置和数据集进行迭代更新,直到模型收敛或达到预设的迭代次数。可以根据具体的训练状态和需求来监控训练过程,并根据需要进行调整和优化。 最后,一旦训练完成,我们可以使用训练好的模型对新的图像进行实例分割。可以通过加载训练好的权重文件来恢复模型,并使用模型对输入图像进行预测和推断,得到每个实例的分割结果。可以将结果保存为掩模图像或直接可视化展示。 在整个训练过程,需要注意数据集的质量,合理调整模型的参数和配置,并进行适当的训练和验证策略,以获得更好的实例分割效果。 ### 回答3: Mask R-CNN 是一种用于图像实例分割的深度学习模型,它结合了目标检测和语义分割的特点。在实际应用,我们需要将模型训练在自己的数据集上,以便能够准确地对我们感兴趣的目标进行实例分割。 首先,我们需要准备自己的数据集。这包括收集具有实例标注的图像,并将它们分成训练集和验证集。实例标注是指为每个图像的目标对象绘制边界框和遮罩,以指示目标的位置和形状。 接下来,我们需要下载并配置Mask R-CNN的代码库。这可以通过在GitHub上找到Mask R-CNN的实现并进行下载。下载完成后,我们需要根据自己的数据集修改代码的配置文件,以适应我们的数据集和实验需求。 然后,我们可以开始训练自己的数据集。通过运行训练脚本,并指定数据集路径、模型配置和训练参数,我们可以开始训练模型。训练过程需要一定的时间和计算资源,具体时间取决于数据集的规模和硬件条件。 在训练过程,模型会逐渐学习到目标的外观和形状特征,并生成准确的边界框和遮罩。可以通过查看训练过程的损失值和验证指标来监控模型的训练情况,并根据需要进行调整和优化。 最后,当模型训练完成后,我们可以使用它对新的图像进行实例分割。通过加载训练好的权重,并用模型进行预测,我们可以得到每个目标对象的边界框和遮罩。这些结果可以进一步用于目标跟踪、图像分析等应用。 综上所述,训练自己的数据集可以帮助我们将Mask R-CNN模型应用到我们关心的领域,并进行准确的图像实例分割。这需要准备数据集、下载代码库、修改配置文件、进行模型训练和应用预测等步骤。通过这一过程,我们可以获得针对自己数据集的个性化实例分割模型,以满足我们具体的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值