The global Human Modification dataset (gHM) provides a cumulative measure of human modification of terrestrial lands globally at 1 square-kilometer resolution. The gHM values range from 0.0-1.0 and are calculated by estimating the proportion of a given location (pixel) that is modified, the estimated intensity of modification associated with a given type of human modification or "stressor". 5 major anthropogenic stressors circa 2016 were mapped using 13 individual datasets:
- human settlement (population density, built-up areas)
- agriculture (cropland, livestock)
- transportation (major, minor, and two-track roads; railroads)
- mining and energy production
- electrical infrastructure (power lines, nighttime lights)
Please see the paper for additional methodological details. This asset was re-projected to WGS84 for use in Earth Engine.
代码:
全球人类改变数据集(gHM)以1平方公里的分辨率提供了全球人类改变陆地的累积测量。gHM值的范围是0.0-1.0,通过估计一个给定的位置(像素)被修改的比例,估计与给定类型的人类修改或 "压力源 "有关的修改强度来计算。使用13个单独的数据集绘制了2016年左右的5个主要人类活动压力源。
人类住区(人口密度、建筑区
农业(耕地、牲畜
运输(主要、次要和双轨公路;铁路
采矿和能源生产
电力基础设施(电线、夜间照明)。
更多方法细节请见本文。该资产被重新投影到WGS84,以便在地球引擎中使用。
Dataset Availability
2016-01-01T00:00:00 - 2016-12-31T00:00:00
Dataset Provider
Collection Snippet
ee.ImageCollection("CSP/HM/GlobalHumanModification")
Resolution
1000 meters
Bands Table
Name | Description | Min | Max | Units |
---|---|---|---|---|
gHM | global Human Modification | 0 | 1 | km^2 |
var dataset = ee.ImageCollection('CSP/HM/GlobalHumanModification');
var visualization = {
bands: ['gHM'],
min: 0.0,
max: 1.0,
palette: ['0c0c0c', '071aff', 'ff0000', 'ffbd03', 'fbff05', 'fffdfd']
};
Map.centerObject(dataset);
Map.addLayer(dataset, visualization, 'Human modification');
数据引用:
Kennedy, C.M., J.R. Oakleaf, D.M. Theobald, S. Baurch-Murdo, and J. Kiesecker. 2019. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 00:1-16. https://doi.org/10.1111/gcb.14549