GEE高阶应用——利用eemont一行代码进行Landsat8/S2数据预处理(process)

本教程介绍如何使用eemont库的process()函数,简化Landsat 8和Sentinel-2数据的预处理,包括去云、辐射校正、大气校正等步骤,旨在提升遥感图像的质量和分析准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本教程的主要目的是简化Landsat数据预处理过程,使用process()函数进行Landsat 8 数据进行去云、缩放和其它数据预处理。

简介

Landsat 8是一颗美国国家航空航天局(NASA)和美国地质调查局(USGS)联合发射的卫星,提供了高质量的遥感影像数据,用于监测地球表面的变化和变化。在利用Landsat 8影像数据进行分析之前,需要对数据进行预处理以消除噪音、校正影像、增强图像质量等。以下是Landsat 8影像数据预处理的主要步骤。

1. 数据获取:首先,需要从USGS的数据存档中获取Landsat 8卫星所拍摄的影像数据。这些数据通常以每个波段的单独文件形式提供,并且存在多个波段的影像数据需要一起处理。

2. 辐射校正:由于不同的波段使用不同的光谱波长范围,所以每个波段的相应光谱辐射是不同的。因此,需要进行辐射校正以标准化每个波段的亮度值。这涉及到使用已知的辐射标准进行校准,并考虑到卫星传感器的响应函数。

3. 大气校正:地球的大气层对于进入卫星传感器的光线会产生衰减和散射。因此,进行大气校正以消除大气影响,使得影像数据更贴近地表反射率。大气校正可以使用大气校正模型和大气参数来进行。

4. 去除云状物:在影像中存在云状物会干扰地表反射率的测量。因此,需要进行云状物去除以去除云状物的影响。这可以通过使用云检测算法来实现,例如使用云和阴影置信度指数来检测和移除云状物。

5.

### Python Landsat 8 C2L2 数据预处理方法 #### 使用Python进行Landsat 8 Collection 2 Level-2 (C2L2) 数据预处理涉及多个方面的工作流程,主要包括数据下载、辐射标定、大气校正、波段组合计算等。 #### 下载Landsat 8 C2L2 数据 为了获取最新的Landsat 8 C2L2 数据,通常会通过Google Earth Engine(GEE) 或者USGS地球资源观测系统(EROS)数据中心。对于自动化工作流来说,利用Python脚本配合API接口自动下载是最理想的方式之一[^3]。 ```python import ee ee.Initialize() # 定义研究区域 roi = ee.Geometry.Polygon( [[[107.9, 25.6], [107.9, 24.6], [109.9, 24.6], [109.9, 25.6]]]) # 加载Landsat 8 C2L2 集合 dataset = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') \ .filterBounds(roi) \ .filterDate('2022-01-01', '2022-12-31') def export_image(image, name): task = ee.batch.Export.image.toDrive(**{ 'image': image, 'description': f'export_{name}', 'folder': 'landsat_c2l2', 'scale': 30, 'region': roi.getInfo()['coordinates'], 'maxPixels': 1e13}) task.start() for i, img in enumerate(dataset.toList(10).getInfo()): image_id = img['id'] print(f"Exporting {i+1}: {image_id}") export_image(ee.Image(image_id), str(i)) ``` #### 辐射标定与大气校正 虽然C2L2级别的产品已经过了一定程度的大气校正,但在某些特定应用场景下可能还需要进一步精细化调整。可以采用基于物理模型的方法如6S模型来进行更精确的大气校正[^2]。 ```python from atmospheric_correction import AtmosphericCorrection ac = AtmosphericCorrection(sensors=['Landsat8']) corrected_img = ac.run(input_image='path_to_your_C2L2_file.tif') ``` 注意上述`atmospheric_correction`库需自行安装并配置好依赖项。 #### 波段运算及指数计算 完成基础的数据准备之后,就可以着手于各种遥感指标的提取了,比如NDVI(归一化植被指数)、NDBI(归一化建筑指数)。这些都可以借助GDAL/OGR库轻松实现。 ```python import numpy as np from osgeo import gdal def calculate_ndvi(red_band_path, nir_band_path, output_tif): red_ds = gdal.Open(red_band_path) nir_ds = gdal.Open(nir_band_path) red_array = red_ds.ReadAsArray().astype(float) nir_array = nir_ds.ReadAsArray().astype(float) ndvi = (nir_array - red_array)/(nir_array + red_array) driver = gdal.GetDriverByName('GTiff') outdata = driver.Create(output_tif, red_ds.RasterXSize, red_ds.RasterYSize, 1, gdal.GDT_Float32) outdata.SetGeoTransform(red_ds.GetGeoTransform()) outdata.SetProjection(red_ds.GetProjection()) outband = outdata.GetRasterBand(1) outband.WriteArray(ndvi) outdata.FlushCache() calculate_ndvi('red_band.tif', 'nir_band.tif', 'ndvi_result.tif') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值