NASA数据集——严格校准的臭氧(O3)、甲醛(HCHO)、二氧化碳(CO2)和甲烷(CH4)混合比,以及包括三维风在内的气象数据

Alpha Jet Atmopsheric eXperiment Meteorological Measurement System (MMS) Data

阿尔法喷气式大气实验气象测量系统(MMS)数据

简介

Alpha Jet Atmospheric eXperiment (AJAX) 是美国国家航空航天局艾姆斯研究中心与 H211, L.L.C. 公司的合作项目,旨在促进对加利福尼亚、内华达和太平洋沿岸地区进行例行现场测量,以支持卫星验证。标准有效载荷包括经过严格校准的臭氧(O3)、甲醛(HCHO)、二氧化碳(CO2)和甲烷(CH4)混合比,以及包括三维风在内的气象数据。每次 2 小时的飞行可完成多个垂直剖面(约 8.5 千米)。十多年来,AJAX 项目一直在定期收集各个季节的痕量气体数据,帮助评估卫星传感器在其大部分寿命期间的健康状况和校准情况,并对该地区其他地方收集的地面和塔基观测数据进行补充。

AJAX 支持美国国家航空航天局的轨道碳观测站 (OCO-2/3)、日本的温室气体观测卫星 (GOSAT) 和 GOSAT-2,并与许多其他研究机构(如加利福尼亚空气资源委员会 (CARB)、国家海洋和大气管理局 (NOAA)、美国林务局 (USFS)、环境保护局 (EPA))开展合作。AJAX 在 2016 年庆祝了其第 200 次科学飞行,之前的研究调查了平流层到对流层的传输、森林火灾羽流、大气河流事件、从亚洲到美国西部的污染远距离传输、城市外流以及天然气泄漏、油田和奶制品厂的排放等各种主题。

数据信息

Resource TypeDataset
Metadata Created DateDecember 1, 2022
Metadata Updated DateDecember 6, 2023
PublisherNASA/LARC/SD/ASDC
Maintainer

Laura Iraci

IdentifierC2166631725-LARC_ASDC
Data First Published2021-03-09
Languageen-US
Data Last Modified2021-11-16
CategoryAJAX, geospatial
Public Access Levelpublic
Bureau Code026:00
Metadata Contexthttps://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog IDhttps://data.nasa.gov/data.json
Schema Versionhttps://project-open-data.cio.gov/v1.1/schema
Catalog Describedbyhttps://project-open-data.cio.gov/v1.1/schema/catalog.json
Citation2021-11-04. Archived by National Aeronautics and Space Administration, U.S. Government, NASA/LARC/SD/ASDC. https://doi.org/10.5067/ASDC/AJAX_MMS.
Harvest Object Id3607027e-af95-4481-a098-339ecf109ef2
Harvest Source Id58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source TitleNASA Data.json
Homepage URLhttps://doi.org/10.5067/ASDC/AJAX_MMS
Metadata Typegeospatial
Old Spatial<?xml version="1.0" encoding="UTF-8"?><gml:Polygon xmlns:gml="http://www.opengis.net/gml/3.2" srsName="EPSG:9825"><gml:outerBoundaryIs><gml:LinearRing><gml:posList>34.0 -125.0 34.0 -114.0 42.0 -114.0 42.0 -125.0 34.0 -125.0</gml:posList></gml:LinearRing></gml:outerBoundaryIs><gml:innerBoundaryIs></gml:innerBoundaryIs></gml:Polygon>
Program Code026:001
Source Datajson IdentifierTrue
Source Hashd99ed5a45d639b4528d1f039fba22b4855ef37c998be9061bfe8bf9149248174
Source Schema Version1.1
Spatial
Temporal2013-06-20T00:00:00Z/2023-02-28T00:00:00Z

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="AJAX_MMS",
    cloud_hosted=True,
    bounding_box=(-165.68, 34.59, -98.1, 71.28),
    temporal=("2017-07-20", "2017-08-08"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Alpha Jet Atmopsheric eXperiment Meteorological Measurement System (MMS) Data - Catalog

网址推荐

0代码在线构建地图应用

https://invite.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型相别,再采用小波变换模极大值法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性准确性。 适合人群:具备一定电力系统基础知识编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价值,也具有很强的实际应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值