1984-2022年全球河流和湖泊表面积 (Surface Area of Rivers and Lakes,SARL)数据集

简介

Nyberg 等人(2024 年)开发的 "河流和湖泊表面积(SARL)"数据集对 38 年间(1984-2022 年)河流和湖泊的水面面积变化进行了全面分析。这个分辨率为 30 米的全球数据集为了解地表水的动态提供了宝贵的信息,尤其突出了季节性所起的日益重要的作用。

SARL 数据集将水体分为七个等级: - 0:背景值:代表无水区域。- 1: 永久河流:全年持续有水的地区。- 2: 永久湖泊:全年持续有水的地区。- 3: 季节性河流:一年中至少有一个月有水的地区。- 4: 季节性湖泊:一年中至少有一个月有水的地区。- 5: 无数据湖泊:缺少湖泊数据的地区。- 6: 无数据河流:缺少河流数据的地区。

研究显示,虽然河流和湖泊的永久总面积保持相对稳定,但季节性间歇覆盖面积却显著增加。具体来说,季节性河流覆盖面积增加了 12%,季节性湖泊覆盖面积增加了 27%。在全球超过 84% 的集水区,这些趋势在统计学上具有重要意义。发表在《水文学与地球系统科学》(Hydrology and Earth System Sciences)上的开放存取文章可在这里找到。

HESS - Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022

此外,这些数据集在 Zenodo 存储库中存档,网址如下。

数据集说明

1984 年至 2022 年河流和湖泊范围的季节性变化不断增加 

地表水的时空分布知识对于水资源管理、洪水风险评估、生态系统健康监测、制约生物地球化学循环估算以及了解我们的气候都非常重要。近年来,由于行星尺度遥感和计算技术的发展,全球尺度地表水时空变化探测技术有了显著提高,但要区分河流和湖泊的变化特征仍然具有挑战性。在此,我们根据河流系统范围和地表水趋势的新数据,分析了过去 38 年全球永久性和季节性河流与湖泊的空间范围。结果显示,虽然河流和湖泊的永久性总面积保持相对稳定,但河流和湖泊的间歇性季节性覆盖面积分别增加了 12% 和 27%。根据高于 0.05 的斯皮尔曼等级相关性(rho)和小于 0.05 的 p 值,在全球 84% 以上的集水区中,这一增长具有显著的统计学意义。季节性河流范围比以前观测到的年平均河流范围大近 32%,这表明季节性变化很大,不仅影响生态系统健康,还影响陆地碳生物地球化学循环的估算。我们的分析结果将作为河流和湖泊表面积(SARL)数据库与大家分享,该数据库是监测和研究水文循环、生态系统核算和水资源管理的宝贵资源。

在过去的 38 年中,河流的永久表面积保持相对稳定,略有增加(1.1%),总面积为 2.9 × 105 平方公里。相比之下,观测到的河流季节性面积增长更为显著(12%),到 2022 年总面积将达到 3.2 × 105 平方公里。季节性与永久性河流水域面积的年百分比从 88% 到 119% 不等,并在 2022 年末有所增加。同样,自 1984 年以来,永久湖泊面积的空间范围增加了不到 1%,总面积达到 24.2 × 105 平方公里。然而,湖泊的季节性面积却大幅增加(自 1984 年以来增加了 27%),总面积达到 7.2 × 105 平方公里。湖泊的季节性水域面积与永久性水域面积之比大大低于河流,同期在 23%-31% 之间。 

从第一次观测到 2022 年,河流和湖泊的总水面面积变化的空间趋势通常相似。在这里,我们看到美国盆地和山脉、南美洲南部和巴塔哥尼亚、非洲南部、亚洲中部和澳大利亚中部地区的水体面积有所减少。相比之下,赤道附近的重要地区,包括巴西、非洲中部和大洋洲,水体范围有所扩大。此外,北纬度的加拿大地盾和西伯利亚高原,以及喜马拉雅山脉、欧洲、中国、东南亚和印度等地的水体面积都呈上升趋势。最后,在非洲撒哈拉沙漠北部、非洲西南部、澳大利亚西部和阿拉伯半岛的沙漠地区,以及努纳武特和格陵兰岛冰川覆盖的北部地区,最常见的是无水观测。

根据斯皮尔曼等级相关性(rho)计算的 1984 年至 2022 年河流和湖泊的永久性与 季节性水面面积的变化趋势。在斯皮尔曼相关性中,河流和湖泊的永久面积呈相对正态分布,表明河流和湖泊的永久面积既有减少,也有增加。总体而言,47% 的集水区的河流永久水面面积发生了统计变化(图 a),54% 的集水区的湖泊永久水面面积发生了变化(图 c)。在所有具有显著统计变化的集水区中,分别有 62% 和 55% 的集水区的河流和湖泊永久水面面积呈正增长。相比之下,河流和湖泊的季节性范围呈强阳性,表明季节性总体增强,分别有 42% 和 49% 的集水区的河流和湖泊出现显著变化(图 b 和 d)。在所有具有显著统计学变化的集水区中,分别有 84% 和 90% 的集水区河流和湖泊的季节性水面面积范围呈正增长。

代码

var geom = 
    /* color: #98ff00 */
    /* shown: false */
    ee.Geometry.Point([-59.33105103256977, -3.155350631633839]),
    img_vis = {"opacity":0.99,"bands":["Y2021"],"min":1,"max":6,"palette":["ffd700","00ffff","0000ff","0043fa","6a0dad","9400d3"]},
    sarl = ee.Image("projects/sat-io/open-datasets/SARL");

//Center to geometry
var geometry = geom.buffer(60000).bounds()
Map.centerObject(geom,10)

//Convert multiband to image collection
var imageCollection = ee.ImageCollection(sarl.bandNames().map(function(b) {
  var year=ee.String(b).slice(1,5)
  return sarl.mask(sarl.gt(0)).select([b]).set('year',year)
}))

//Set visualization
var viz = {min: 1,max: 6,opacity: 0.50,palette: ["#FFD700","#00FFFF","#0000FF","#0043FA","#6A0DAD","#9400D3"]};
var collection = imageCollection
  .map(function f(e) {
    return e.visualize(viz);
  });

Map.addLayer(imageCollection.sort('year',false).first(),img_vis,'2021')

geometry.evaluate(function(result) {
  var regionGeoJSON = JSON.stringify(result);

  // Print the thumbnail
  print(ui.Thumbnail(collection, {
    format: 'gif',
    crs: 'EPSG:3857',
    region: regionGeoJSON,
    dimensions: '500x500'
  }));
});

// Add Snazzy Map style
var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/38/shades-of-grey", "Greyscale");

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:hydrology/SURFACE-AREA-RIVER-LAKES

Earth Engine App: WaterChange

App Source Code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:hydrology/SARL-APP

结果

引用

Nyberg, B., Sayre, R., and Luijendijk, E.: Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022,
Hydrol. Earth Syst. Sci., 28, 1653–1663, 2024.

Nyberg, B. (2023). Surface Area of River and Lakes (SARL) (1.0) [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.6895820

许可

Creative Commons Attribution 4.0 International

Created by: Nyberg et al 2024

Curated in GEE by: Nyberg and Samapriya Roy

Keywords: water, water change, rivers, lakes

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs

机器学习

https://www.cbedai.net/xg 

2010全球30m分辨率陆表水域数据集(GlobeLand30_WTR2010)是中国捐赠给联合国(20149月)的全球30m分辨率土地覆盖数据集(2010)中十个数据集之一。陆表水域是地表覆盖的重要组成部分。该数据集依托全球地表覆盖遥感制图项目,根据全球优选(无云或少云)的2010及前后1-2间9907景30m空间分辨率的美国陆地资源卫星(Landsat)TM5、ETM 多光谱影像数据及2640景中国环境减灾卫星(HJ-1)多光谱影像数据。在数据预处理基础上,利用基于像元的水域综合提取、面向对象的图斑处理人机交互的数据优化等遥感提取方法,兼顾陆表水域遥感提取的高效性准确性,形成了2010全球30m分辨率陆表水域数据集(GlobeLand30_WTR2010)。该数据经过部分地区的抽样检验。数据集采用分幅方式组织数据文件,总计759个数据文件组,每个文件组包括3类数据文件,分别为以.Tif, .tfw格式存储的实体数据、以.shp格式存储的数据开发应用的遥感影像数据信息以.xml格式存储的元数据信息。为便利获取网络共享,实体数据被分为5个压缩数据文件包(.rar数据格式)。其中,GlobeLand30_WTR2010_1.rar是欧洲亚洲72?E以西的地表水域数据集文件包;GlobeLand30_WTR2010_2.rar是亚洲72?E以东的地表水域数据集文件包;GlobeLand30_WTR2010_3.rar是北美洲50?以北的地表水域数据集文件包;GlobeLand30_WTR2010_4.rar是北美洲50?以南南美洲的地表水域数据集文件包;GlobeLand30_WTR2010_5.rar是非洲大洋洲的地表水域数据集文件包。此外,数据集中包括一个附录数据说明文件(GlobeLand30_WTR2010.xlsx)。数据表明,2010全球陆表水域面积为367.54万km2。全球陆表水域的空间分布不均匀。其中,北美洲占据全球地表水域面积40%以上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值