AI智能化提取——基于Segment Anything Model 2 Geospatial 中的进行房屋建筑提取分析

概述

基于Meta的"分割一切模型"(SAM),SAMGeo Python工具包为地理空间数据带来了先进的图像分割能力。本实践研讨会专为渴望在项目中释放GeoAI潜力的地理空间爱好者、研究人员和专业人士设计。

参与者将探索如何利用SAMGeo对卫星和航空影像进行精准高效的图像分割。研讨会包含分步演示与实践练习,涵盖以下内容:

  • SAM与SAMGeo介绍:了解SAM的架构与功能,及其在地理空间分析中的变革性应用。
  • 数据准备:为多光谱通道的地理空间数据集进行分割任务预处理。
  • SAMGeo实战操作:通过坐标点、边界框和文本提示,分割地理空间要素(如建筑、树木、水体)。
  • 后处理技术:计算分割要素的几何属性,筛选结果并提取有价值信息。
  • 数据可视化:以标准地理空间格式展示对象掩膜和分割要素,支持分析与报告。

研讨会结束时,参与者将获得运用SAMGeo解决真实地理空间挑战的实战经验,并掌握提升地理空间数据工作流程的新工具。

目标受众

本研讨会适合地理空间数据科学家、遥感分析师、研究人员,以及对AI应用于地理空间数据感兴趣的所有人士。

先决条件

  • Google Colab账号
  • 建议具备Python编程基础知识和地理空间数据概念

录像回放

研讨会录像已上传至YouTube:点击观看


SAM2模型与SAM模型的对比

Meta Segment Anything Model 2 (SAM 2) 模型介绍与优势对比

1. SAM 2 模型概述

Meta 的 Segment Anything Model 2 (SAM 2) 是 SAM 模型的升级版,旨在解决图像和视频中的可提示视觉分割问题。SAM 2 的核心思想是将图像视为单帧视频,从而将图像分割能力无缝扩展到视频领域。它采用了 Transformer 架构,并结合流式内存机制,实现了实时视频处理能力。

2. SAM 2 的核心特性
  1. 统一的图像和视频分割能力
    SAM 2 是首个能够同时处理图像和视频分割任务的统一模型。它支持从单帧图像到任意长度视频的分割,适用于多种场景。

  2. 实时视频处理与记忆机制
    SAM 2 通过引入流式内存机制,能够在视频帧之间跟踪目标对象,即使对象暂时消失或发生遮挡,也能保持连贯性。其处理速度可达每秒 44 帧,适用于实时应用场景。

  3. 增强的交互性与提示技术
    SAM 2 支持更高级的提示技术,包括点击、边界框和掩码输入。用户可以在任何帧上添加提示或进行修正,模型会实时更新分割结果。这种交互性使其在处理复杂场景时更加灵活。

  4. 零样本泛化能力
    SAM 2 具备强大的零样本泛化能力,能够分割未经过专门训练的物体。这一特性使其在处理多样化或不断变化的视觉内容时表现出色。

3. SAM 2 与 SAM 的对比
  1. 性能提升

    • 准确性:SAM 2 在图像分割任务中的准确度显著高于 SAM,速度提升了 6 倍。
    • 视频分割:SAM 2 在视频对象分割任务中表现优异,特别是在跟踪物体部件方面,优于现有的专门视频分割模型。
  2. 功能扩展

    • 视频支持:SAM 2 将 SAM 的图像分割能力扩展到了视频领域,支持实时视频分割和对象跟踪。
    • 记忆机制:SAM 2 引入了流式内存模块,能够在视频帧之间保持对象连续性,解决了遮挡和动态变化问题。
  3. 交互性与效率

    • 交互时间减少:SAM 2 所需的交互时间比 SAM 减少了三倍,显著提高了用户效率。
    • 多掩码生成:SAM 2 在复杂场景中能够生成多个有效掩码,并根据置信度选择最佳结果,进一步提升了分割精度。
4. SAM 2 的应用场景
  1. 创意产业:简化图像和视频编辑中的对象选择、背景替换和高级合成任务。
  2. 科学研究:在医学成像中精确识别和分离不同身体部位,或在环境研究中分析卫星图像。
  3. 自动驾驶:提高自动驾驶车辆感知系统的准确性,更好地识别和追踪行人、车辆和障碍物。
  4. 增强现实:通过实时精确跟踪对象,创造更加沉浸式的 AR 体验。
5. 总结与展望

SAM 2 代表了计算机视觉领域的重要进展,它将图像和视频分割任务统一到一个高效的模型中,为众多应用场景提供了新的可能性。尽管 SAM 2 在处理复杂场景时仍面临一些挑战,但其开源性质将推动整个 AI 社区的创新和进步。未来,SAM 2 可能会在模型鲁棒性、多对象分割效率以及与其他 AI 技术的结合方面取得进一步突破。

通过 SAM 2,Meta 再次展示了其在计算机视觉领域的领先地位,为图像和视频分割技术的发展开辟了新的道路。

使用 Segment Anything Model (SAM) 对地理空间数据进行分割的 Python 软件包 🗺️

segment-geospatial

###简介
segment-geospatial 软件包的灵感来源于 Aliaksandr Hancharenka 编写的 segment-anything-eo 存储库。为了方便将 Segment Anything Model(SAM)用于地理空间数据,我开发了 segment-anything-py 和 segment-geospatial Python 软件包,现在可以在 PyPI 和 conda-forge 上下载。我的主要目标是简化利用 SAM 进行地理空间数据分析的过程,使用户能够以最小的编码工作量实现这一目标。我从 segment-anything-eo 软件库中改编了 segment-geospatial 的源代码,其原始版本归功于 Aliaksandr Hancharenka。

###功能

  • 从瓦片地图服务 (TMS) 服务器下载地图瓦片并创建 GeoTIFF 文件
  • 使用 Segment Anything Model (SAM)
    和 HQ-SAM 对 GeoTIFF 文件进行分割
    使用文本提示分割遥感图像
    交互式创建前景和背景标记
    从矢量数据集加载现有标记
    将分割结果保存为常见的矢量格式(GeoPackage、Shapefile、GeoJSON)
    将输入提示保存为 GeoJSON 文件
    在交互式地图上显示分割结果 从时间序列遥感图像中分割对象

SAM与SAMGeo介绍

Meta AI于2023年4月推出的"分割一切模型"(SAM)是计算机视觉领域的重大突破,尤其在图像分割方向表现卓越。作为可提示式分割模型,SAM能根据坐标点、边界框或文本输入生成精确的分割掩膜。其显著特点是零样本迁移能力,无需额外训练即可适应新图像分布和任务,这得益于其在SA-1B数据集上的训练——该数据集包含1100万张图像的超过10亿个分割掩膜。

2024年8月,Meta AI在SAM基础上发布了升级版SAM 2。新版本实现了图像与视频的实时可提示对象分割,通过统一模型达到顶尖性能,支持快速精准提取任意视觉场景中的对象。SAM 2的核心增强包括精度与处理速度提升、高级提示技术,以及无缝处理视频分割任务的能力。

基于SAM和SAM 2的成功,SAMGeo Python工具包将这些能力扩展至地理空间数据领域。借助SAMGeo,用户可对卫星和航空影像执行高级图像分割任务,从地理空间数据集中提取关键信息。地理空间专业人员通过SAMGeo能优化工作流程,强化数据分析能力,并开拓遥感应用的新可能。

更多关于SAM与SAMGeo的信息,请访问幻灯片:查看链接


环境配置

本地安装依赖包

若在本地运行此笔记本,可通过以下命令安装所需包:

pip install samgeo

###使用conda进行安装

conda create -n sam python=3.12
conda activate sam
conda install -c conda-forge mamba
mamba install -c conda-forge segment-geospatial groundingdino-py gdal

###使用 Google Colab
如果使用 Google Colab,请确保为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值