Spruce Leaf, Tree Traits, and Respiration at Range Extremes, AK and NY, USA, 2018
简介
本数据集提供了来自阿拉斯加北部纬度森林-苔原生态过渡带(FTE)附近达顿公路附近和纽约州布莱克洛克森林的一个研究地点的云杉(白冷杉)针叶级气体交换和叶性状的原位测量。测量使用开放式流动便携式光合作用系统(Li6400XT)和定制温度控制细胞进行。在将针叶温度从约 5°C 升至 65°C 的过程中,以每分钟 1°C 的恒定速率连续测量叶温度作为呼吸的函数。其他数据包括胸径(DBH)、叶面积、光合速率、细胞间 CO2、水分导度、树高和原始温度曲线数据。结果以叶面积和叶质量为基础报告。数据时间为 2018 年 6 月 6 日至 2018 年 6 月 23 日,并以逗号分隔值(CSV)格式提供。
摘要
这个数据集包含了关于亚拉斯加州和纽约州2018年的雪松树叶、树木特征以及范围极限下呼吸作用的数据。具体来说,数据集主要涵盖了以下方面:
- 雪松树叶数据:包括叶片的形态特征、叶片表面积、叶片厚度等数据。
- 树木特征数据:包括树木的高度、直径、树木种类等信息。
- 范围极限下呼吸作用数据:包括在极端气候条件下雪松树的呼吸作用速率、光合作用速率等数据。
这些数据可以帮助研究人员了解雪松树在不同地理环境下的生长情况和生理特征的变化,以及探讨极端气候条件下植物的生存策略和适应能力。
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
import pandas as pd
import leafmap
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
short_name="ArcticTreeLine_Spruce_CO2_WV_1948",
cloud_hosted=True,
bounding_box=(-149.96, 41.4, -74.02, 67.89),
temporal=("2018-06-06", "2018-06-23"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)
gdf.explore()
#leafmap.nasa_data_download(results[:5], out_dir="data")
引用
Griffin, K., S.C. Schmiege, S.G. Bruner, N. Boelman, L. Vierling, J. Eitel, and Z.M. Griffin. 2022. Spruce Leaf, Tree Traits, and Respiration at Range Extremes, AK and NY, USA, 2018. ORNL DAAC, Oak Ridge, Tennessee, USA. Spruce Leaf, Tree Traits, and Respiration at Range Extremes, AK and NY, USA, 2018, https://doi.org/10.3334/ORNLDAAC/1948
网址推荐
知识星球
知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428