城市生态系统中生物源碳动态:2010-2019年GPP、Reco和NEE数据集分析

Urban Biogenic CO2 fluxes: GPP, Reco and NEE Estimates from SMUrF, 2010-2019

简介

这个数据集记录了2010年至2019年期间,城市中生物源碳排放的GPP(总初级生产力)、Reco(总呼吸作用)以及NEE(净生态交换)的估算值。这些数据来自SMUrF项目,可以帮助研究人员了解城市生态系统中碳的动态变化情况。

摘要

Common Core

Table 1. File names and descriptions. <yyyy> and <yyyymm> represent the year and year and month of the data file, respectively. See Table 2 for a description of each <region>.

File NameDescription
fourday_mean_SIF_GPP_uncert_<region>_<yyyy>.nc4 (e.g., fourday_mean_SIF_GPP_uncert_easternChina_2018.nc4)4-day mean SIF and GPP uncertainties for each region, for each available year

daily_mean_Reco_uncert_<region>_<yyyymm>.nc4
(e.g., daily_mean_Reco_uncert_centralAfrica_201701.nc4)

Daily mean Reco uncertainties for each region, for each month of each available year
hrly_mean_GPP_Reco_NEE_<region>_<yyyymm>.nc4
(e.g., hrly_mean_GPP_Reco_NEE_westernCONUS_201602.nc4)
Hourly mean GPP, Reco, and NEE for each region, for each month for each available year

Data File Details

The no-data value is -999.

Table 2. Years of data available for each region.

RegionYear
central Africa, eastern Asia, eastern Australia, eastern China, and South America2017, 2018
eastern CONUS, western CONUS2010–2019
western Europe2010–2014, 2017, 2018

Table 3. Variables included in all data files.

VariablesDimension and UnitDescription
londegree_eastLongitude at cell center
latdegree_northLatitude at cell center
timeseconds since 1970-01-01 00:00:00ZUTC time

Table 4. Variables in files named fourday_mean_SIF_GPP_uncert_<region>_<yyyy>.nc4.

VariableUnits/formatDescription
SIF_meanmW m−2 nm−1 sr−14-day mean clear-sky CSIF from Zhang et al. (2018)
GPP_meanµmol m-2 s-14-day mean Gross Primary Production (best estimates) based on clear-sky CSIF and GPP- SIF slopes aggregated from 500 m
GPP_sdµmol m-2 s-11-sigma uncertainty of the 4-day mean Gross Primary Productions (based on model-FLUXNET comparisons)

 Table 5. Variables in files named daily_mean_Reco_uncert_<region>_<yyyymm>.nc4.

VariableUnits/formatDescription
Reco_meanµmol m-2 s-1Daily mean Ecosystem Respiration (best estimates) based on pretrained biome-specific neural network models and ERA5-based temperature fields
Reco_sdµmol m-2 s-11-sigma uncertainty of Daily Mean Ecosystem Respiration (based on model-FLUXNET comparisons)

Table 6. Variables in files named hrly_mean_GPP_Reco_NEE_<region>_<yyyymm>.nc4.

VariableUnits/formatDescription
GPP_meanµmol m-2 s-1Hourly mean Gross Primary Production (best estimates) using hourly downscaling factors based on hourly fields of surface solar radiation downwards from ERA5 reanalysis
Reco_meanµmol m-2 s-1Hourly mean Ecosystem Respiration (best estimates) using hourly downscaling factors based on hourly air temperature fields from ERA5 reanalysis
NEE_meanµmol m-2 s-1Hourly mean Net Ecosystem Exchanges (best estimates) based on hourly GPP and Reco

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="Biogenic_CO2flux_SIF_SMUrF_1899",
    cloud_hosted=True,
    bounding_box=(-125.0, -40.0, 155.0, 60.0),
    temporal=("2010-01-01", "2019-12-31"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Wu, D., and J.C. Lin. 2021. Urban Biogenic CO2 fluxes: GPP, Reco and NEE Estimates from SMUrF, 2010-2019. ORNL DAAC, Oak Ridge, Tennessee, USA.

网址推荐

知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg 

干旱监测平台

慧天干旱监测与预警-首页https://www.htdrought.com/

<think>好的,用户之前问过Java线程池的参数实例,现在接着问核心线程数最大线程数怎么设定合理。我需要先回顾之前的回答,确保这次的内容连贯。之前已经详细介绍了线程池的七个参数,并给出了示例代码执行流程。现在用户更关注这两个关键参数的设置,可能是在实际项目中遇到了性能调优的问题,或者想优化现有的线程池配置。 用户可能是开发人员,正在处理多线程任务,需要根据不同的任务类型来调整线程数。他们可能对CPU密集型IO密集型任务的区别不太清楚,或者不知道如何具体应用这些理论到实际中。需要给出具体的建议,比如公式或经验法则,同时结合场景说明。 需要确定核心线程数最大线程数设置依据。根据常见的实践,CPU密集型任务通常设置为CPU核心数+1,而IO密集型则可能需要更多线程,比如2倍核心数。但用户可能想知道更详细的解释,比如为什么这样设置,或者是否有动态调整的方法。 另外,用户可能关心如何避免资源耗尽OOM问题,所以需要提到队列的选择拒绝策略的配合。比如,使用有界队列防止任务无限堆积,或者根据任务特性选择不同的队列类型。 还要考虑是否要介绍监控动态调整的方法,比如Spring的ThreadPoolTaskExecutor,或者Hystrix的线程池配置,但可能超出当前问题的范围。不过可以简要提及,让用户知道有这些工具可用。 需要结构清晰,分点说明,可能包括任务类型分析、参数设置公式、注意事项、示例场景等。同时结合之前的回答,保持一致性,比如之前提到的参数设置建议,这里需要详细展开核心最大线程数的部分。 需要验证下是否有最新的最佳实践,或者是否有不同的观点,比如是否核心线程数等于最大线程数在某些情况下更合适。比如在响应式编程或异步处理中,可能采用不同的策略。 还要注意避免过于技术化的术语,用通俗的中文解释清楚。比如解释CPU密集型任务为什么需要较少的线程,IO密集型为什么可以更多,因为线程在等待IO时可以释放CPU资源。 最后,给出一个总结性的建议,帮助用户快速决策,同时提醒他们实际测试的重要性,因为理论值可能需要根据具体环境调整。</think>在Java线程池中,核心线程数(`corePoolSize`)最大线程数(`maximumPoolSize`)的设置直接影响系统性能资源利用率。以下是结合不同场景的详细设定建议: --- ### 一、基础公式与原则 | 参数 | 作用 | 设置原则 | |----------------|-----------------------------------|-----------------------------------| | 核心线程数 | 长期保留的线程,处理常规任务 | **不低于最低需求**,避免频繁创建/销毁 | | 最大线程数 | 应对突发流量的临时线程 | **不高于系统承载极限**,防止资源耗尽 | --- ### 二、按任务类型划分 #### 1. **CPU密集型任务** 特点:大量计算(如算法运算、数值分析) 公式: $$ \text{核心线程数} = \text{CPU核心数} + 1 $$ $$ \text{最大线程数} = \text{核心线程数} \quad \text{或} \quad \text{核心数} \times 1.5 $$ 示例: ```java // 8核CPU处理视频转码任务 int core = Runtime.getRuntime().availableProcessors() + 1; // 9 int max = core; // 保持与核心数一致 ``` #### 2. **IO密集型任务** 特点:频繁等待(如数据库操作、网络请求) 公式: $$ \text{核心线程数} = \text{CPU核心数} \times 2 $$ $$ \text{最大线程数} = \text{核心数} \times (2 \sim 5) $$ 示例: ```java // 8核CPU处理HTTP请求 int core = Runtime.getRuntime().availableProcessors() * 2; // 16 int max = core * 3; // 48 ``` #### 3. **混合型任务** 策略: - 拆分为CPU/IO两种线程池分别处理 - 使用动态调整策略: $$ \text{最大线程数} = \frac{\text{任务总耗时}}{\text{CPU计算耗时}} \times \text{核心数} $$ --- ### 三、高级调整策略 #### 1. **利特尔法则(Little's Law)** 适用于需要控制响应时间的场景: $$ \text{线程数} = \frac{\text{平均响应时间} + \text{平均等待时间}}{\text{平均响应时间}} \times \text{CPU核心数} $$ #### 2. **动态调整(适用云原生场景)** ```java ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newCachedThreadPool(); executor.setCorePoolSize(动态值); // 根据监控指标实时调整 executor.setMaximumPoolSize(动态值); ``` #### 3. **Spring Boot实践建议** ```yaml # application.yml task: execution: pool: core-size: 8 max-size: 20 queue-capacity: 100 ``` --- ### 四、关键注意事项 1. **队列容量与线程数的平衡** - 大队列+小线程数:适合短任务、高吞吐场景 - 小队列+大线程数:适合长任务、低延迟场景 2. **避免典型误区** - ❌ 核心线程数=0:导致频繁创建/销毁线程 - ❌ 最大线程数=Integer.MAX_VALUE:引发OOM风险 - ❌ 核心线程数=最大线程数:失去应对突发流量的能力 3. **监控指标参考** | 指标 | 健康值域 | 干预措施 | |-----------------------|-------------------|-----------------------------------| | 活跃线程数 / 最大线程数 | < 80% | 正常 | | 队列使用率 | < 90% | 扩容队列或线程数 | | 拒绝任务数 | =0 | 优化拒绝策略或扩容 | --- ### 五、真实场景案例 #### 电商秒杀系统(突发流量) ```java // 16核服务器配置 int core = 16; // 基础承载能力 int max = 16 * 5; // 应对瞬时流量(80线程) BlockingQueue queue = new LinkedBlockingQueue(500); // 缓冲队列 // 配合拒绝策略:队列满时返回错误提示 RejectedExecutionHandler handler = new ThreadPoolExecutor.AbortPolicy(); ``` #### 数据分析后台(稳定负载) ```java // 32核服务器处理批量计算 int core = 32 + 1 = 33; int max = 33; // 保持固定线程数 BlockingQueue queue = new ArrayBlockingQueue(1000); // 有序队列 ``` --- ### 六、验证工具推荐 1. **JVisualVM**:监控线程状态CPU使用率 2. **Arthas**:实时查看线程池运行状态 ```bash thread -n 5 # 查看最忙的5个线程 dashboard # 监控线程池队列情况 ``` 3. **Prometheus + Grafana**:搭建可视化监控平台 --- 合理设置线程数的本质是在**资源利用率****系统稳定性**之间找到平衡点。建议先通过公式计算理论值,再结合压力测试(如JMeter)逐步优化,最终以实际监控数据为准动态调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值