植被生长与环境因素关联性研究:北部森林数据集分析

ABoVE: Landsat Vegetation Greenness Trends, Boreal Forest Biome, 1985-2019

简介

这个数据集涵盖了1985年到2019年的时间范围内,在北部森林生物群系中,利用Landsat卫星测量的植被绿度趋势。数据集收集了关于植被覆盖变化的信息,可以帮助研究人员了解在这一时期内,北部森林地区植被的生长和变化情况。

摘要

Table 1. File names and descriptions.

File NameUnitsDescription
boreal_greenness_median_percent_change_BBBB_CCCC.tifpercentMedian percent change in annual maximum vegetation greenness for time period across all sample locations within each ecological land unit. Percent change was computed as the change in vegetation greenness during the time period divided by initial vegetation greenness and then multiplied by 100.
boreal_greenness_percent_browning_BBBB_CCCC.tifpercentPercent of sample locations in each ecological land unit that had a significant (α=0.10) negative trend in annual maximum vegetation greenness for the time period.
boreal_greenness_percent_greening_BBBB_CCCC.tifpercentPercent of sample locations in each ecological land unit that had a significant (α=0.10) positive trend in annual maximum vegetation greenness for the time period.
boreal_sample_frame.tif1Binary raster identifying grid cells that were part of the boreal forest sampling frame.
boreal_ecounits.tif1Numerical identifier for each ecological land unit in the boreal sampling frame.
boreal_greenness_trend_summary.csv-Tabular data including trends in annual maximum vegetation greenness for sample locations during two time periods derived using an ensemble of spectral vegetation indices.
See Table 2 for variables and descriptions.

Data File Details

Each GeoTIFF has a spatial domain covering the circum-hemispheric distribution of the boreal forest biome between 45 to 70 degrees north at 300 m spatial resolution in the North Pole Lambert Azimuthal Equal Area (LAEA) spatial projection (EPSG:3571).

Table 2. Variables in the file boreal_greenness_trend_summary.csv. Each trend metric includes a best-estimate (50th percentile) as well as a lower bound (2.5th percentile) and upper bound (97.5th percentile) of a 95% confidence interval derived from Monte Carlo simulations.

VariableUnitsDescription
site-Unique alphanumeric identifier for each sample location.
latitudedegree_northLatitude in decimal degrees of site; WGS84 datum.
longitudedegree_eastLongitude in decimal degrees of site; WGS84 datum.
ecounit1Numerical identifier for the Ecological Land Unit in which each site is located.
trend.period-Time period over which the trend in vegetation greenness was assessed (“1985 to 2019” or “2000 to 2019").
tau.p0251Mann-Kendall’s tau statistic (2.5th percentile).
tau.p5001Mann-Kendall’s tau statistic (50th percentile).
tau.p9751Mann-Kendall’s tau statistic (97.5th percentile).
percent.change.p025percentPercent change in vegetation greenness (2.5th percentile).
percent.change.p500percentPercent change in vegetation greenness (50th percentile).
percent.change.p975percentPercent change in vegetation greenness (97.5th percentile).

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ABoVE_ASCENDS_XCO2_2050",
    cloud_hosted=True,
    bounding_box=(-180.0, 45.0, 180.0, 72.0),
    temporal=("1985-01-01", "2019-12-31"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Berner, L.T., and S.J. Goetz. 2022. ABoVE: Landsat Vegetation Greenness Trends, Boreal Forest Biome, 1985-2019. ORNL DAAC, Oak Ridge, Tennessee, USA. 

网址推荐

知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg 

干旱监测平台

慧天干旱监测与预警-首页https://www.htdrought.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值