LBA-ECO CD-04 Soil Moisture Data, km 83 Tower Site, Tapajos National Forest, Brazil
简介
本数据集报告了巴西帕拉州塔帕若斯国家森林内 83 号塔台(伐木林地)两座塔台附近 10 米深度土壤湿度和降水量的连续高分辨率频域反射测量数据。测量时间为 2002 年和 2003 年。土壤湿度和降水量数据以逗号分隔的 ASCII 文件形式提供。
第一座测井塔于 2000 年 6 月在该地点一片完整的森林区域安装(“完整”测井塔),并配备了涡流通量和微气象测量仪器,并在该地区任何伐木活动开始前 15 个月投入运行(Goulden 等人,2004 年;Miller 等人,2004 年;Rocha 等人,2004 年)。2001 年 9 月,测井塔附近的区域被选择性地砍伐(Bruno 等人,2006 年)。
第二座塔(“间隙塔”)于 2002 年 6 月安装并投入使用,位于完好塔以东 400 米处。间隙塔安装在一个 50 米 x 50 米的原木平台的中间。
土壤湿度测量在距离微气象塔站点约 20 米、未受干扰的森林斑块中,在 10 米深的垂直坑(1 x 1 平方米)中进行。反射计水平插入竖井壁,深度分别为地表以下 0.15、0.30、0.60、1、2、3、4、6、8 和 10 米。这些数据用于确定土壤湿度在昼夜、季节和多年时间尺度上的变化,并更好地理解土壤湿度与森林蒸散量之间的定量和机制关系。
摘要
File name: CD04_TNF_KM83_Soil_Moisture.csv
Column number | Column heading | Units/format | Description |
---|---|---|---|
1 | Date | yyyy/mm/dd | Sample date |
2 | Hour | HH:MM | Time at the start of the sampling period 24 hour clock: time in local time which is GMT -4 hours |
3 | Exp_Day | Decimal day since Jan 1 2000 ( 1= midnight January 1 2000) | |
4 | Rainfall | mm | Total rainfall in millimeters (mm) recorded over the 30-minute sampling period |
5 | VWC_15cm | m3/m3 | Volumetric water content at 15 cm depth |
6 | VWC_30cm | m3/m3 | Volumetric water content at 30 cm depth |
7 | VWC_60cm | m3/m3 | Volumetric water content at 60 cm depth |
8 | VWC_100cm | m3/m3 | Volumetric water content at 100 cm depth |
9 | VWC_200cm | m3/m3 | Volumetric water content at 200 cm depth |
10 | VWC_300cm | m3/m3 | Volumetric water content at 300 cm depth |
11 | VWC_400cm | m3/m3 | Volumetric water content at 400 cm depth |
12 | VWC_600cm | m3/m3 | Volumetric water content at 600 cm depth |
13 | VWC_800cm | m3/m3 | Volumetric water content at 800 cm depth |
14 | VWC_1000cm | m3/m3 | Volumetric water content at 1000 cm depth |
missing data are represented by -999 |
CD04_TNF_KM83_Gap_Soil_Moisture.csv
Column number | Column heading | Units/format | Description |
---|---|---|---|
1 | Date | yyyy/mm/dd | Sample date |
2 | Hour | HH:MM | Time at the start of the sampling period 24 hour clock: time in local time which is GMT -4 hours |
3 | Exp_Day | Decimal day since Jan 1 2000 ( 1= midnight January 1 2000) | |
4 | Rainfall | mm | Total rainfall in millimeters (mm) recorded over the 60-minute sampling period |
5 | VWC_15cm | m3/m3 | Volumetric water content at 15 cm depth |
6 | VWC_30cm | m3/m3 | Volumetric water content at 30 cm depth |
7 | VWC_60cm | m3/m3 | Volumetric water content at 60 cm depth |
8 | VWC_100cm | m3/m3 | Volumetric water content at 100 cm depth |
9 | VWC_200cm | m3/m3 | Volumetric water content at 200 cm depth |
10 | VWC_300cm | m3/m3 | Volumetric water content at 300 cm depth |
11 | VWC_400cm | m3/m3 | Volumetric water content at 400 cm depth |
12 | VWC_600cm | m3/m3 | Volumetric water content at 600 cm depth |
13 | VWC_800cm | m3/m3 | Volumetric water content at 800 cm depth |
14 | VWC_1000cm | m3/m3 | Volumetric water content at 1000 cm depth |
missing data are represented by -999 |
Site boundaries: (All latitude and longitude given in degrees and fractions)
Site (Region) | Westernmost Longitude | Easternmost Longitude | Northernmost Latitude | Southernmost Latitude | Geodetic Datum |
---|---|---|---|---|---|
Para Western (Santarem) - km 83 Logged Forest Tower (Para Western (Santarem)) | -54.9707 | -54.9707 | -3.017 | -3.017 | World Geodetic System, 1984 (WGS-84) |
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
import pandas as pd
import leafmap
url = "https://github.com/opengeos/NASA-Earth-Data"
df = pd.read_csv(url, sep="\t")
df
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
short_name="CD04_Soil_Moisture_Km83_979",
cloud_hosted=True,
bounding_box=(-54.97, -3.02, -54.96, -2.75),
temporal=("2001-12-31", "2003-12-17"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)
gdf.explore()
#leafmap.nasa_data_download(results[:5], out_dir="data")
引用
Goulden, M.L. S.D. Miller and H.R. da Rocha. 2010. LBA-ECO CD-04 Soil Moisture Data, km 83 Tower Site, Tapajos National Forest, Brazil. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
网址推荐
个人主页
https://sites.google.com/view/xingguang/main
知识星球
知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428