GEE土地分类:使用 Landsat 8 卫星图像进行了水体和土地分类分析(不同训练样本点的精度对比)

简介

这些是用于分类佩蒂特河流域土地覆盖的代码,以及计算快速研究项目中的火灾严重程度的代码。这些代码已设置好以运行和导出数据,但在注释方面远不如我其他存储库中的代码。

佩蒂特流域的分类过程与内莉·胡安流域相同。我使用相同的代码在两个流域中运行分类,除了陆地卫星 7 号。佩蒂特有足够的图像进行扫描线校正,因此有陆地卫星 7 号活动期间所有年份的陆地卫星图像。此外,我们决定排除流域中的历史火灾。自 1980 年代以来,约 20%的流域发生了火灾,我们希望分析不受火灾干扰的土地覆盖变化。但这大大减少了可用于分类的面积,并稍微扭曲了训练数据的土地覆盖分布。

我们主要基于非监督分类选择了 Payette 河的 6 种土地覆盖类型。这些类型包括岩石、密集森林(没有可见的下木层森林)、过渡森林(有可见下木层的森林)、河岸灌木(靠近水体的深绿色和“毛茸茸”的冠层)、植被岩屑(裸露岩屑坡上的稀疏灌木和幼树)以及岩屑上的树木(岩屑坡上形成半密集群落的树木和灌木)。我们发现 X-means 分类器通常会产生 6 种土地覆盖类型,我们将这些类型与该地区的高分辨率影像和历史影像进行了比较。我们发现土地覆盖主要由植被密度决定,而不一定是特定的物种或植物类型。由于土地覆盖不是非常明显,这使得分类变得极其困难。Payette 河流域的分类准确率通常在 70 多点或刚刚超过 80%。这个流域将大大受益于实地考察,以查看

"sgmediation.zip" 是一个包含 UCLA(加利福尼亚大学洛杉矶分校)开发的 sgmediation 插件的压缩包。该插件专为统计分析软件 Stata 设计,用于进行中介效应分析。在社会科学、心理学、市场营销等领域,中介效应分析是一种关键的统计方法,它帮助研究人员探究变量之间的因果关系,尤其是中间变量如何影响因变量与自变量之间的关系。Stata 是一款广泛使用的统计分析软件,具备众多命令用户编写的程序来拓展其功能,sgmediation 插件便是其中之一。它能让用户在 Stata 中轻松开展中介效应分析,无需编写复杂代码。 下载并解压 "sgmediation.zip" 后,需将解压得到的 "sgmediation" 文件移至 Stata 的 ado 目录结构中。ado(ado 目录并非“adolescent data organization”缩写,而是 Stata 的自定义命令存放目录)目录是 Stata 存放自定义命令的地方,应将文件放置于 "ado\base\s" 子目录下。这样,Stata 启动时会自动加载该目录下的所有 ado 文件,使 "sgmediation" 命令在 Stata 命令行中可用。 使用 sgmediation 插件的步骤如下:1. 安装插件:将解压后的 "sgmediation" 文件放入 Stata 的 ado 目录。如果 Stata 安装路径是 C:\Program Files\Stata\ado\base,则需将文件复制到 C:\Program Files\Stata\ado\base\s。2. 启动 Stata:打开 Stata,确保软件已更新至最新版本,以便识别新添加的 ado 文件。3. 加载插件:启动 Stata 后,在命令行输入 ado update sgmediation,以确保插件已加载并更新至最新版本。4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值