GEE深度学习——使用卷积神经网络(Convolutional Neural Network,CNN)进行土地分类(PyTorch模式)

本文介绍了使用PyTorch构建卷积神经网络(CNN)进行土地分类的方法,包括环境配置、数据准备、模型创建、训练、测试、部署到Google Cloud Vertex AI的过程,以及如何从地球引擎连接到托管模型进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch

PyTorch是一个开源的深度学习框架,由Facebook于2016年发布。它提供了丰富的工具和库,用于构建和训练神经网络模型。

PyTorch的核心是动态计算图,它允许用户在运行时定义、修改和调试计算图,这使得模型开发变得非常灵活和直观。与静态计算图的框架相比,PyTorch使得调试和实验更加简单,因为用户可以在编写代码时直接查看变量和计算结果。

PyTorch提供了丰富的神经网络模块,例如卷积神经网络(CNN)、循环神经网络(RNN)和变换器(Transformer)。这些模块可以轻松地组合和扩展,以构建复杂的深度学习模型。

PyTorch还提供了一套易于使用的自动求导工具,可以自动计算梯度并进行反向传播。这使得训练模型变得非常便捷,用户只需要关注定义模型的结构和前向传播的逻辑,而不需要手动计算梯度和更新参数。

此外,PyTorch还支持使用GPU进行加速计算,这对于处理大规模数据和复杂模型非常重要。用户可以简单地将张量(Tensor)移动到GPU上,并在上面执行计算。

PyTorch具有强大的社区支持,有许多开源项目和教程可供使用和参考。这使得学习和掌握PyTorch变得更加容易。

总的来说,PyTorch是一个功能强大、灵活且易于使用的深度学习框架,适用于从学术研究到实际应用的各种任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值