GEE案例:基于MODIS火灾数据,并结合气候和地形变量等多源遥感数据,评估火灾对生态环境的影响并导出矢量数据

一项关于过去 10 年影响野火分布因素的全球性研究。我们使用 Google Earth Engine 获取数据,并使用 Python 进行分析。

这个项目是更大研究的前提,旨在了解影响全球野火分布的因素。我们提出了两种从多光谱卫星图像中提取野火信息的方法,以便研究影响全球尺度野火分布的因素。将使用 Google Earth Engine 创建包含所有因素的一幅图像,我们将从烧毁和未烧毁区域随机提取点,通过机器学习分类工具(随机森林、自适应增强、降维分析等)进行分析。

为了从图像中提取点,我们提出了两种不同的方法。第一种方法更直接,包括在感兴趣的区域上应用掩码以从中提取点。这种方法带来了有趣且快速的结果。第二种方法是使用六边形瓦片来提取地球特定区域中的点,该区域以其烧毁像素的数量而区别开来。这种方法在点提取方面提供了更高的灵活性,并使我们能够在分类过程中达到更高的准确性。我们的工作为这些因素的进一步分析奠定了基础和材料,同时已经在数据上提供了一些初步的实验。

关键词:Google Earth Engine,遥感,野火全球分布

方法1

使用 Google Earth Engine 进行野火分布分析

在这篇博客中,我们将介绍如何使用 Google Earth Engine(GEE)对过去十年影响野火分布的因素进行分析。我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值