一项关于过去 10 年影响野火分布因素的全球性研究。我们使用 Google Earth Engine 获取数据,并使用 Python 进行分析。
这个项目是更大研究的前提,旨在了解影响全球野火分布的因素。我们提出了两种从多光谱卫星图像中提取野火信息的方法,以便研究影响全球尺度野火分布的因素。将使用 Google Earth Engine 创建包含所有因素的一幅图像,我们将从烧毁和未烧毁区域随机提取点,通过机器学习分类工具(随机森林、自适应增强、降维分析等)进行分析。
为了从图像中提取点,我们提出了两种不同的方法。第一种方法更直接,包括在感兴趣的区域上应用掩码以从中提取点。这种方法带来了有趣且快速的结果。第二种方法是使用六边形瓦片来提取地球特定区域中的点,该区域以其烧毁像素的数量而区别开来。这种方法在点提取方面提供了更高的灵活性,并使我们能够在分类过程中达到更高的准确性。我们的工作为这些因素的进一步分析奠定了基础和材料,同时已经在数据上提供了一些初步的实验。
关键词:Google Earth Engine,遥感,野火全球分布
方法1
使用 Google Earth Engine 进行野火分布分析
在这篇博客中,我们将介绍如何使用 Google Earth Engine(GEE)对过去十年影响野火分布的因素进行分析。我