风控模型-评分卡模型优化(4)

本文讨论了评分卡模型在业务变化和时间影响下如何进行优化,涉及优化触发条件如新业务场景、数据更新及指标下降原因,如样本分布差异、风险变化和过拟合。优化后还需评估决策体系影响并可能调整阈值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评分卡模型优化

评分卡模型上线后,随着业务和时间的变化,模型性能可能逐渐下降甚至失效。需要在触发条件后进行模型优化,在模型优化完成后,还要评估优化后对现有决策体系的影响,可能还要对现有阈值进行改变。

模型优化触发

通常在满足一定条件后需要对评分卡模型进行优化。其中包括一些原因:

  1. 新业务场景上线,且新的产品客群与之前的样本不同。
  2. 信贷政策等发生变化。
  3. 内部数据变化,比如重要特征出现了逻辑、数值上的变化
  4. 指标下降,比如PSI、KS等指标不再符合要求。

模型指标下降原因

当模型指标下降时,需要对下降原因进行分析。

  1. 样本分布有差异,例如新的样本的特征与历史训练数据的样本差异过大。
  2. 样本风险变化,比如大量样本的风险上升或者下降。
  3. 过拟合,比如新的OOT数据相比模型验证时的OOT指标有显著差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水木流年追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值