评分卡模型优化
评分卡模型上线后,随着业务和时间的变化,模型性能可能逐渐下降甚至失效。需要在触发条件后进行模型优化,在模型优化完成后,还要评估优化后对现有决策体系的影响,可能还要对现有阈值进行改变。
模型优化触发
通常在满足一定条件后需要对评分卡模型进行优化。其中包括一些原因:
- 新业务场景上线,且新的产品客群与之前的样本不同。
- 信贷政策等发生变化。
- 内部数据变化,比如重要特征出现了逻辑、数值上的变化
- 指标下降,比如PSI、KS等指标不再符合要求。
模型指标下降原因
当模型指标下降时,需要对下降原因进行分析。
- 样本分布有差异,例如新的样本的特征与历史训练数据的样本差异过大。
- 样本风险变化,比如大量样本的风险上升或者下降。
- 过拟合,比如新的OOT数据相比模型验证时的OOT指标有显著差异。