组内相关系数intraclass correlation(ICC)

组内相关系数

它描述了同一组中的单位彼此相似的程度。虽然它被视为一种相关性,但与大多数其他相关性度量不同,它对结构化为组的数据而不是结构化为成对观察的数据进行操作。
在对同一度量或测量工具的定量数据进行一致性评价时,如评分量表的评分者间或评分者内的信度,通常采用组内相关系数(ICC)进行评价。
在这里插入图片描述
具体分析流程: SPSSAU

参考:https://en.wikipedia.org/wiki/Intraclass_correlation
https://www.zhihu.com/question/452619333/answer/2111347415
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219854

### 类内相关系数ICC)概述 类内相关系数Intraclass Correlation Coefficient, ICC),用于评估测量数据的一致性和可靠性,特别是在多观察者间的数据一致性分析中具有重要意义[^1]。 #### 定义 ICC衡量的是来自同一群体内的观测值之间的相似程度。具体来说,该指标反映了随机效应模型中的变异量占总变异的比例。当ICC接近于1时,表示内成员间的相似度很高;反之,则表明个体差异较大。 #### 计算方法 ICC可以通过方差成分估计来获得,在单因素随机效应模型下有如下表达式: \[ \text{ICC}=\frac{\sigma_{\alpha }^{2}}{\left(\sigma_{\alpha }^{2}+\sigma_{e}^{2}\right)} \] 其中 $\sigma_{\alpha }^{2}$ 表示被试间的真实得分变异数,$\sigma_{e}^{2}$ 是误差项的变异数。 对于不同的研究设计和目的,存在多种类型的ICC计算方式,例如: - **Case 1**: 单一评定者绝对一致性的ICC (One-way random model),适用于仅考虑一名评价者的场合; - **Cases 2 & 3**: 多名固定或随机选定的独立评审员相对一致性/平均数一致性(Two-Way Random Effects Model / Two-Way Mixed Effects Model)。 Python实现ICC计算的一个简单例子可以采用`pingouin`库: ```python import pingouin as pg icc_result = pg.intraclass_corr(data=df, targets='target', raters='rater', ratings='rating') print(icc_result) ``` 此代码片段展示了如何利用第三方库快速获取ICC统计结果。 #### 应用场景 ICC广泛应用于医学、心理学等领域,尤其是在涉及重复测量的研究中非常有用。比如临床试验里不同医生对患者病情严重程度评分的一致性检验;教育测评领域教师对学生作业打分的标准统一情况等都可以通过ICC来进行量化描述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值