MCP
Anthropic:Introducing the Model Context Protocol
增强型大语言模型(the argumented llm)
The argumented llm 指通过外部工具、数据或协议(如 MCP)增强大语言模型的能力,现在经常使用的联网搜索、知识库、workflow都属于增强llm的范畴,使得user能够访问实时信息、执行复杂任务或调用特定功能。
联系
MCP 通过开放协议实现 LLM 能力的动态扩展,其设计目标与 Augmented LLM 高度一致。
MCP 是 AI 应用的 USB-C 端口,而 Augmented LLM 是插上这些端口后功能强大的设备。
拾象科技万字详解MCP:Agentic AI中间层最优解
MCP协议详解:一文读懂跨时代的模型上下文协议
如何实现?
-
标准化工具集成:
MCP 定义了一套统一的接口规范(类似 USB-C),允许 LLM 通过 MCP Server 动态发现和调用外部工具(如数据库、API、爬虫等),无需为每个工具定制开发适配器。
示例:LLM 通过 MCP 调用 poe2_server 的爬虫工具获取游戏实时补丁信息。 -
动态上下文增强:
MCP Server 将异构数据源(如 PDF、数据库)转化为标准化格式,供 LLM 直接使用,解决了传统 LLM 依赖静态训练数据的局限性15。 -
模块化扩展:
一个 LLM 可同时连接多个 MCP Server(如 API Server + Data Server),实现多领域能力组合,打造“万能应用”。
MCP 和 langchain
特性 | 传统方法(如 LangChain) | MCP 方案 |
---|---|---|
协议标准化 | 无统一协议,依赖开发者自定义 | 统一接口(类似 HTTP/USB-C) |
工具发现 | 需硬编码工具列表 | 动态发现(/tools/list) |
生态扩展性 | 封闭生态(如 GPTs 仅限 OpenAI) | 开放协议,社区共建工具库 |
安全性 | API 密钥暴露风险 | 所有者通过 MCP Server 控权 |
希望这对您有帮助!
打造Agentic AI
参考官方文档mcp通用架构,设计自己的agentic AI
连接以下核心组件:
工具 Server:负责执行外部任务,如数据爬取、API 调用等。
数据 Server:存储和管理结构化数据,如日志、文档等。
Model Server:托管和管理模型的训练与推理,包括加载最新模型版本和动态调整模型配置。
本地数据:访问本地文件系统,获取静态数据。
通过 MCP 协议,AI 能够高效地连接这些组件,实现复杂任务的自主执行和智能化处理。