FCOS是一个one-stage的、全卷积的、以每个像素预测物体的方式的目标检测算法,类似于语义分割。
现在顶级的目标检测算法,像RetinaNet, SSD, YOLOv3, and Faster R-CNN这都是依赖于anchor boxes,而FCOS是anchor boxes free的。
FCOS使用唯一的后处理(NMS),采用ResNeXt-64x4d-101做backbone,AP达到了44.7%,超越了先前的one-stage算法,并且更简单。首次展示了更简单更灵活的目标检测框架提升了目标检测的准确率。