点云质量评估

本文探讨了点云质量评估的方法,包括全参考、半参考和无参考的分类,重点介绍了p2plane评价步骤,以及利用A3D-to-2D投影通过图像质量指标(如PSNR、SSIM等)预测感知质量的技术。文章还详细解释了如何通过旋转矩阵和最小二乘法进行数据预处理和验证迭代过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点云质量评价 Point Cloud Quality Assessment

分类

  • 全参考
  • 半参考
  • 无参考

评价指标

  • p2point:对每个点云 a a a 中的点 a i a_i ai,去找到失真的点云 b b b 中距离 a i a_i ai 最近的那个点 b i b_i bi 来作为对应的点来比较
    • 优点:效率高
    • 缺点:精准度有限,不允许平面之间的滑动
  • p2plane:求源点云中的点 p i p_i pi目标点云中 q i q_i qi ​组成的曲面的距离,需要提供每个点的法向量
  • PSNR_yuv
  • 点云投影成图像,进行图像质量评估(感知质量)

Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration,将点云向六个垂直图像的平面投影,然后用图像评价指标评价图像质量:the weighted peak signal-to-noise ratio (PSNR), structural similarity (SSIM), feature similarity (FSIM) and natural image quality evaluator (NIQE)

  • FR-PCQA
  • NR-PCQA

p2plane

E ( R , t ) = ∑ i = 1 N ( ( R p i + t − q i ) T n i ) 2 E(R,t)=\sum^{N}_{i=1}{((Rp_i + t - q_i)^T n_i)^2} E(R,t)=i=1N((Rpi+tqi)Tni)2
其中,源点云(通常是旋转的) P = { p 1 , ⋯   , p N p , p i ∈ R 3 } P=\{p_1,\cdots, p_{N_{p}}, p_i\in R^3 \} P={p1,,pNp,piR3};目标点云(参考点云,通常固定) Q = { q 1 , ⋯   , q N 1 , q i ∈ R 3 } Q=\{q_1,\cdots,q_{N_{1}},q_i \in R^3 \} Q={q1,,qN1,qiR3},每个 q i q_i qi 点的法向量为 n i n_i ni

上式没有解析解,可采用最小二乘法。因为旋转矩阵 R R R 有9个元素,但要满足 R R T = I RR^T=I RRT=I ∣ R ∣ = 1 \vert R\vert=1 R=1 的约束,故 R R R 不能随便选。此时可以采用欧拉角的方式描述旋转矩阵。

α \alpha α 是绕 x 轴旋转的角度, β \beta β 是绕 y轴旋转角度, γ \gamma γ 是绕 z轴的角度,则有每个轴对应的旋转矩阵:
R x ( α ) = [ 1 0 0 0 cos ⁡ α − sin ⁡ α 0 sin ⁡ α cos ⁡ α ] , R y ( β ) = [ 1 0 0 0 cos ⁡ β − sin ⁡ β 0 sin ⁡ β cos ⁡ β ] , R z ( γ ) = [ 1 0 0 0 cos ⁡ γ − sin ⁡ γ 0 sin ⁡ γ cos ⁡ γ ] R_x(\alpha)=\begin{bmatrix} 1&0&0\\ 0&\cos\alpha &-\sin\alpha \\ 0&\sin\alpha &\cos\alpha \\ \end{bmatrix}, R_y(\beta)=\begin{bmatrix} 1&0&0\\ 0&\cos\beta &-\sin\beta \\ 0&\sin\beta &\cos\beta \\ \end{bmatrix}, R_z(\gamma)=\begin{bmatrix} 1&0&0\\ 0&\cos\gamma &-\sin\gamma \\ 0&\sin\gamma &\cos\gamma \\ \end{bmatrix} Rx(α)= 1000cosαsinα0sinαcosα ,Ry(β)= 1000cosβsinβ0sinβcosβ ,Rz(γ)= 1000cosγsinγ0sinγcosγ
故旋转矩阵可计算得到:
R = R z ( γ ) R x ( α ) R y ( β ) = [ 1 0 0 0 cos ⁡ γ − sin ⁡ γ 0 sin ⁡ γ cos ⁡ γ ] [ 1 0 0 0 cos ⁡ α − sin ⁡ α 0 sin ⁡ α cos ⁡ α ] [ 1 0 0 0 cos ⁡ β − sin ⁡ β 0 sin ⁡ β cos ⁡ β ] = [ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] R=R_z(\gamma)R_x(\alpha)R_y(\beta)= \begin{bmatrix} 1&0&0\\ 0&\cos\gamma &-\sin\gamma \\ 0&\sin\gamma &\cos\gamma \\ \end{bmatrix} \begin{bmatrix} 1&0&0\\ 0&\cos\alpha &-\sin\alpha \\ 0&\sin\alpha &\cos\alpha \\ \end{bmatrix} \begin{bmatrix} 1&0&0\\ 0&\cos\beta &-\sin\beta \\ 0&\sin\beta &\cos\beta \\ \end{bmatrix} \\ =\begin{bmatrix} r_{11}&r_{12}&r_{13}\\ r_{21}&r_{22}&r_{23}\\ r_{31}&r_{32}&r_{33}\\ \end{bmatrix} R=Rz(γ)Rx(α)Ry(β)= 1000cosγsinγ0sinγcosγ 1000cosαsinα0sinαcosα 1000cosβsinβ0sinβcosβ = r11r21r31r12r22r32r13r23r33
这样的 R R R 矩阵是个非线性矩阵,不能采用最小二乘法,而采用高斯牛顿列文伯格的方法,计算复杂。最终,采用近似的方法:
α , β , γ → 0 cos ⁡ θ ≈ 1 , sin ⁡ θ ≈ θ , θ 2 ≈ 0 , i f   θ ≈ 0 \alpha,\beta,\gamma \rightarrow 0 \\ \cos{\theta}\approx1, \sin{\theta}\approx\theta, \theta^2\approx0,if\ \theta\approx0 α,β,γ0cosθ1,sinθθ,θ20,if θ0
则有
R ≈ [ 1 α β − γ α γ + β γ α β γ + 1 β γ − α − β α 1 ] ≈ [ 1 − γ β γ 1 − α − β α 1 ] R\approx \begin{bmatrix} 1&\alpha \beta-\gamma&\alpha\gamma+\beta \\ \gamma&\alpha\beta\gamma+1&\beta\gamma-\alpha \\ -\beta&\alpha&1 \\ \end{bmatrix}\approx \begin{bmatrix} 1&-\gamma&\beta\\ \gamma&1&-\alpha \\ -\beta&\alpha&1 \\ \end{bmatrix} R 1γβαβγαβγ+1ααγ+ββγα1 1γβγ1αβα1

最后通过最小二乘法解得线性方程,从而得到 [ R , t ] \begin{bmatrix} R,t \end{bmatrix} [R,t].

评价步骤

  1. 数据预处理:
    • 对源点云中的点在目标点云中寻找最近邻居
    • 移除距离大的点, ∣ ∣ p i − q i ∣ ∣ \vert\vert p_i-q_i\vert\vert ∣∣piqi∣∣ 超过阈值
  2. 计算 R , t R, t R,t
  3. 验证
    • 评估迭代的收敛性: E ( R , t ) ↓ E(R,t)\downarrow E(R,t) Δ R , Δ t ↓ \Delta R, \Delta t \downarrow ΔR,Δt
    • 迭代未终止: P ← R P + t P\leftarrow RP+t PRP+t,重复1-3步,直至迭代成功

loading…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值