激光雷达点云数据质量评价指标及计算方法

本文介绍了激光雷达点云数据质量的评价指标,包括点云密度、高程精度、平面精度、粗差率和强度质量,并强调了强度质量在特征信息提取和测绘应用中的重要性。同时,讨论了刺点的概念及其在外业像控点测量中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、术语和定义

1.激光雷达( light detection and ranging;LiDAR)
发射激光束并接受回波i获取目标三维信息的系统

2.点云(point cloud)
以离散、不规则方式分布在三位空间中的点的集合

3.激光雷达点云(LiDAR point cloud)
通过激光雷达扫描获得的点云

4.点云密度(density of point cloud)
以高程方向为法相方向,单位面积上点云中激光点的平均数量

5.点云粗差(outlier of point cloud)
激光雷达点云数据中不属于地表激光点的离群点

二、机载激光雷达点云数据质量评价指标

1.点云密度:用于描述单位面积上激光雷达点的平均数量;

2.高程精度:用于评价激光需达点云数据的高程与其真实的地面高程之间误差分布离散程度的指标,采用最大高程误差、高程中误差、相对高程中误差进行评价,对于有重叠航带的激光雷达点云数据可采用航带拼接高程误差进行高程精度评价;

3.平面精度:用于评价激光雷达点云数据的平面位置与其真实的地面位置之间误差分布的离散程度,采用最大平面位置误差、平面位置中误差、相对平面位置中误差进行评价,对于有重叠航带的激光雷达点云数据可采用航带拼接平面位置误差进行平面精度评价;

4.粗差率:用于描述激光雷达点云数据中点云粗差出现的概率

5.强度质量</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氧艺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值