先验、后验、似然、置信的理解

先验、后验、似然、置信的理解


1. 贝叶斯公式

在这里插入图片描述
公式中:
所求的是事件 A 发生条件下事件 Bi 的概率为P(Bi│A):
试验产生了原因A之后,再对结果发生概率的新认识,故称后验概率(posterior)

事件 Bi 的概率为P(Bi):
结果发生的可能性大小,故称先验概率(prior)

事件 Bi 已发生条件下事件 A 的概率为P(A│Bi):
即已经有了结果 Bi ,反推对事件 A 发生的可能性描述,故称似然(likelyhood)

事件 A 的概率为P(A):
试验产生原因A的概率,故称置信(evidence)


2. 举例

比如根据出现乌云判断下雨的概率这件事来说:

后验:根据天上有乌云(A:原因或者证据/观察数据),下雨(B:结果)的概率

先验:根据若干年的统计(经验)或者气候(常识),此时此景下雨(B:结果)的概率

似然:下雨(B:结果)的时候有乌云(A:因/证据/观察的数据)的概率

置信:此时此景有乌云(A:因/证据/观察的数据)的概率

假设现在有乌云,置信 = 1 ,后验 = 先验 x 似然 :
存在下雨的可能(先验)的概率,下雨之前会有乌云(似然)的概率
就可通过现在有乌云推断下雨(后验)的概率


谢谢!

发布了217 篇原创文章 · 获赞 292 · 访问量 289万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie

分享到微信朋友圈

×

扫一扫,手机浏览