SLAM GMapping(8)重采样

本文介绍了SLAM GMapping中的重采样机制,旨在解决粒子滤波器的退化问题。通过定义评价粒子权重相似性的Neff指标,当其低于阈值时执行重采样,以保持粒子的多样性。重采样函数resample用于更新粒子群,并在满足条件时将激光扫描信息注册到地图上。此外,文章还概述了重采样器的实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SLAM GMapping(8)重采样


1. 重采样

重采样是为了消除早期SIS粒子滤波器的粒子退化问题
其基本思想是对赋予权重的粒子集合进行重新采样,从中取出权重较小的粒子,增加权重较大的粒子

虽然,这一操作成功地解决了粒子退化问题
但它带来了一种所谓的粒子匮乏地问题,随着迭代次数的增加,粒子的多样性在下降

GMapping采取了一种自适应的方式进行重采样
定义了一个指标Neff来评价粒子权重的相似度
只有在Neff小于一个给定的阈值的时候才进行重采样,其背后的思想可以在《SLAM GMapping(7)粒子和轨迹》查看
就是,粒子的权重差异越小, Neff越大,得到的粒子则更接近于对目标分布的采样


2. 重采样函数

通过resample重采样函数,当权重相似性小于设置的阈值时,
利用resampleIndexes函数获取采样后的粒子在原始粒子集合中的索引
将选取的样本记录在临时粒子集合temp中,删除原粒子群
遍历重采样保留的临时粒子集合,将激光扫描的占用信息注册到栅格地图上ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氢键H-H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值