【高级RAG技巧】使用二阶段检索器平衡检索的效率和精度

一 传统方法

之前的文章已经介绍过向量数据库在RAG(Retrieval Augmented Generative)中的应用,本文将会讨论另一个重要的工具-Embedding模型。
在这里插入图片描述一般来说,构建生产环境下的RAG系统是直接使用Embedding模型对用户输入的Query进行向量化表示,并且从已经构建好的向量数据库中检索出相关的段落用户大模型生成。但是这种方法很明显会受到Embedding模型性能的影响,比如是否支持多语言、跨语言检索、训练数据的质量等。因此,以改进Embedding模型为目标提升RAG系统性能一般会有两种做法:

方法1,在使用向量模型获取密集向量后,再使用Cross-encoder作为精排模型,对第一次召回的结果进行重排,以提高最终结果的质量。
方法2,使用稀疏向量搭配密集向量进行召回。密集向量即对整个文本进行向量化表示产生的向量,稀疏向量则是对原始文本的编码表示,如TF-IDF,BM25等。其中,稀疏向量可以帮助识别和捕捉特定的语义信息,比如文本中的关键词,而密集向量则可以提供更丰富的语义表达,是通过大量长文本学习而来的。通过同时将这两种向量进行召回,可以获得更丰富、更全面的信息,从而提升 RAG 的效果。

方法1和方法2既可以独立使用,也可以搭配使用,这就大大增加了算法工程师的武器库,通过搭积木的方式来提高RAG系统的效果。

二 Reranker模型剖析

本文主要讨论二阶段检索的方法,

<think>嗯,用户现在想了解如何使用RAG模型对CSV文件进行检索,或者RAG检索CSV数据的实现方式。我需要先回忆一下RAG的基本概念流程,然后看看如何将CSV文件整合进去。 首先,根据引用[2],RAG的数据提取阶段需要从各种来源加载文档数据,包括CSV。CSV文件通常以表格形式存储数据,所以可能需要将表格内容转换成文本格式,以便后续处理。比如,可以把每一行数据转换为自然语言描述的句子,或者保留表头作为元数据。 接下来,数据预处理部分,可能需要分块。CSV的行可能比较短,所以是否需要合并多个行为一个块?或者按列来分块?但一般来说,分块策略需要考虑上下文的相关性。可能每个块包含若干行,或者根据列的重要性来处理。此外,引用[3]提到了父文档检索器(PDR),可能涉及元数据过滤,比如在CSV中,可以添加列名作为元数据,方便后续检索时过滤。 然后是向量化处理。需要将CSV中的每个数据块转换为向量,存储到向量数据库中。这里可能需要用到像Sentence Transformers这样的模型生成嵌入向量。在检索时,用户的查询也会被向量化,然后与数据库中的向量进行相似度匹配,找到最相关的数据块。 最后,生成部分需要将检索到的CSV数据整合到生成模型中。比如,在问答系统中,将检索到的表格行作为上下文输入给LLM,生成答案。需要注意的是,表格数据可能结构复杂,转换成自然语言描述会更适合模型处理,比如“产品名称:X,销量:Y”。 另外,用户可能需要具体的实现步骤或代码示例。比如使用Python的pandas库读取CSV,用LangChain框架处理分块向量化,再结合类似FAISS的向量数据库进行检索。最后用Hugging Face的模型生成回答。 还要考虑性能优化,比如如何处理大型CSV文件,分块的大小设置,以及元数据的合理使用来提高检索准确性。例如,在引用[3]中提到的元数据过滤,可以针对CSV中的特定列进行过滤,比如国家或产品名称,这样能更精确地定位相关信息。 用户可能还关心实际应用场景,比如用RAG处理销售数据CSV,进行问答或生成报告。需要确保生成的回答不仅正确,还能有效利用表格中的结构化数据。可能需要测试不同的分块策略提示词设计,以优化生成结果的质量。 总之,步骤大致分为数据加载与解析、预处理与分块、向量化与存储、检索与生成四个部分,每个部分都需要根据CSV的特性进行调整,确保RAG系统能有效处理利用表格数据。</think>### 分步解答:如何用RAG模型检索CSV文件数据? #### **1. 数据加载与解析** - **CSV文件加载**:使用工具(如Python的`pandas`)读取CSV文件,提取结构化数据。例如: ```python import pandas as pd data = pd.read_csv("data.csv") ``` - **数据规范化**:将表格数据转换为自然语言描述或键值对格式,便于后续处理。例如将一行数据转换为: $$文本 = "产品名称:{ProductName}, 销量:{Sales}, 国家:{Country}"$$ #### **2. 预处理与分块** - **分块策略**: - **按行分块**:每行作为独立文本块,适合字独立的场景[^2]。 - **按逻辑组合并**:合并相关行(如同一产品的多个月份数据),增强上下文关联性。 - **添加元数据**:为每个块附加列名(如`ProductName`、`Country`)作为元数据,用于后续过滤[^3]。 #### **3. 向量化与存储** - **向量生成**:使用嵌入模型(如`Sentence-BERT`)将文本块转换为向量: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') embeddings = model.encode(text_chunks) ``` - **向量数据库存储**:将向量存入数据库(如`FAISS`或`Chroma`),并关联元数据: ```python import faiss index = faiss.IndexFlatL2(embedding_dim) index.add(embeddings) ``` #### **4. 检索与生成** - **检索过程**: - 将用户查询(如“加拿大的产品销量”)转换为向量。 - 通过向量相似度匹配,检索相关数据块,可结合元数据过滤(如`Country=Canada`)提升精度[^3]。 - **生成答案**:将检索结果输入生成模型(如GPT-3),生成结构化回答: ```python context = "产品A销量:1000;产品B销量:2000" prompt = f"根据以下数据回答问题:{context}\n问题:加拿大销量最高的产品是什么?" response = llm.generate(prompt) ``` --- ### **示例代码框架** ```python from langchain.document_loaders import CSVLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS # 1. 加载CSV并分块 loader = CSVLoader(file_path="data.csv", metadata_columns=["Country", "ProductName"]) documents = loader.load() # 2. 向量化存储 embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") db = FAISS.from_documents(documents, embeddings) # 3. 检索与生成 query = "加拿大的产品销量" docs = db.similarity_search(query, filter={"Country": "Canada"}) context = "\n".join([doc.page_content for doc in docs]) answer = llm(f"根据上下文回答:{context}\n问题:{query}") ``` --- ### **优化建议** 1. **元数据设计**:为CSV列添加清晰的元数据标签(如`数据类型`、`时间范围`),提升检索过滤效率[^3]。 2. **分块粒度**:根据字关联性调整分块大小(如单行 vs 多行聚合)。 3. **混合检索**:结合关键词匹配(如精确列名)与向量检索平衡精度与语义理解。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值