RAG结合了生成式模型的语言理解能力和检索系统的内容回溯功能,是一种帮助解决复杂查询需求的有效方案。然而,要让 RAG 模型在实际场景中表现优异,还需要对其进行有针对性的优化。
本文介绍了八种提升 RAG 模型准确性和召回率的实用策略,希望对从事相关工作的朋友有所帮助。
1. 两阶段优化:召回和精度双向提升
在搜索查询的过程中,两阶段优化是一种非常有效的方式。首先,我们最大化召回率,即尽量多地获取与查询相关的内容;接下来,通过 Reranking 技术对这些内容重新排序,以优先展示最相关的结果。
效果:两阶段优化能够兼顾召回率和准确性。通过扩大检索范围并对结果进行精确排序,模型可以在各种场景中高效地回应复杂查询。例如,金融、医疗、法律等领域的复杂查询需求,往往需要确保不遗漏信息,同时保持高度相关性。
2. 微调与提示工程:提升模型表现
微调(Fine-tuning)和提示工程(Prompt Engineering)是提升模型表现的两个重要手段。微调是基于特定领域数据对模型进行再训练,使其对某些任务更加敏感,而提示工程则是通过设计有效的提示词,使模型更好地理解用户问题的意图。
效果:微调让模型对专业领域中的特定术语或知识点有更好的识别能力,提高了准确性。而通过提示工程精心设计的引导,模型能生成更符合预期的回答。这种方法适用于知识库查询、技术支持自动化等场景,尤其是在法律或医学等专业问答领域,能够大幅提高模型的响应质量。
3. 优化假设性问题:提升搜索质量
构建“假设性问题”是提高搜索准确性的另一重要策略。在这里,我们可以使用 HyDE(Hypothetical Document Embedding)方法生成假设性问题,帮助模型理解和搜索更多潜在相关的内容。这种方法通过生成与用户问题语义相近的假设性问题,扩展模型的理解空间,以捕获更多与实际问题语义接近的内容。
效果:当用户问题较模糊或复杂时,这种方法能极大提升搜索结果的相关性。假设性问题的生成让模型能够在更大语义空间中找到答案,适用于金融分析、研究资料查找等需要深度理解的信息查询场景。
4. RAG-Fusion:多查询召回和 RRF 算法结合
RAG-Fusion 是将多查询召回(Multi-query Recall)与 RRF(Reciprocal Rank Fusion)算法结合使用的优化策略。通过使用多个查询来获取更全面的内容,再根据各次查询结果的重要性进行加权排序,确保高召回率和高相关性。
效果:RAG-Fusion 在应对复杂问题时表现突出。不同关键词的组合查询可以获取多角度的内容,而 RRF 算法则确保最终展示给用户的结果是高度相关的。该策略适合多样化查询场景,例如新闻搜索、科学文献检索,或产品推荐系统中的用户多样化需求。
5. 问题转换:改写和拓展问题语义
问题转换通过改写和语义扩展,将用户问题转换成多种表达方式,以便模型能在处理问题时更加灵活。可以使用同义词替换或增加补充信息等方法,帮助模型识别问题的不同表达方式,提高召回效果。
效果:问题转换显著扩展了模型的理解能力,对提升召回率尤为重要,尤其适用于开放式问题。在智能客服系统、搜索引擎或对话机器人等场景下,问题转换能大幅度增强模型理解用户问题的多样性。
6. 调整文本切分和领域分类:增强召回与准确度
合理的文本切分和领域分类可以优化模型的搜索过程。文本切分能够减少信息碎片化带来的影响,让模型更精准地找到相关内容。领域分类帮助模型在不同主题上进行精确检索,使得召回率和准确率双双提升。
效果:对文本内容按逻辑切分、分类,模型的查询准确性和相关性都能得到提升,适用于数据量大且分布在多个领域的数据。此策略适合大型文档库、知识库、行业报告等需要对内容精准管理的场景。
7. Small-to-Big 索引:通过小索引连接大内容
Small-to-Big 索引策略通过小规模内容(如摘要或关键句)建立索引,并链接到大规模内容主体中,提升检索的完整性。这种方法在多文档场景中非常有效,可以让模型通过小内容找到更多的上下文关联信息。
效果:这种方法提高了模型在多文档或长文档场景下的搜索完整性。用户可以获取更有逻辑连贯性的答案,适用于法律文件、技术文档等长文档的检索。
8. 结构化数据提取:定制提取提升准确率
在结构化数据丰富的领域中,针对特定结构化数据的提取策略能显著提升查询的准确率。通过精细设计的提取方式,模型可以更准确地找到相关内容,避免误检无关信息。
效果:结构化数据提取能够确保模型提取内容的精准性,在医疗、财务、法律等高度结构化数据场景中尤为有效。针对这些领域的特定需求进行数据定制,能大幅度减少无关信息的干扰,帮助模型提供更可靠的回答。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓