提升 RAG 模型准确性的八大策略

RAG结合了生成式模型的语言理解能力和检索系统的内容回溯功能,是一种帮助解决复杂查询需求的有效方案。然而,要让 RAG 模型在实际场景中表现优异,还需要对其进行有针对性的优化。

本文介绍了八种提升 RAG 模型准确性和召回率的实用策略,希望对从事相关工作的朋友有所帮助。


1. 两阶段优化:召回和精度双向提升

在搜索查询的过程中,两阶段优化是一种非常有效的方式。首先,我们最大化召回率,即尽量多地获取与查询相关的内容;接下来,通过 Reranking 技术对这些内容重新排序,以优先展示最相关的结果。

效果:两阶段优化能够兼顾召回率和准确性。通过扩大检索范围并对结果进行精确排序,模型可以在各种场景中高效地回应复杂查询。例如,金融、医疗、法律等领域的复杂查询需求,往往需要确保不遗漏信息,同时保持高度相关性。


2. 微调与提示工程:提升模型表现

微调(Fine-tuning)和提示工程(Prompt Engineering)是提升模型表现的两个重要手段。微调是基于特定领域数据对模型进行再训练,使其对某些任务更加敏感,而提示工程则是通过设计有效的提示词,使模型更好地理解用户问题的意图。

效果:微调让模型对专业领域中的特定术语或知识点有更好的识别能力,提高了准确性。而通过提示工程精心设计的引导,模型能生成更符合预期的回答。这种方法适用于知识库查询、技术支持自动化等场景,尤其是在法律或医学等专业问答领域,能够大幅提高模型的响应质量。


3. 优化假设性问题:提升搜索质量

构建“假设性问题”是提高搜索准确性的另一重要策略。在这里,我们可以使用 HyDE(Hypothetical Document Embedding)方法生成假设性问题,帮助模型理解和搜索更多潜在相关的内容。这种方法通过生成与用户问题语义相近的假设性问题,扩展模型的理解空间,以捕获更多与实际问题语义接近的内容。

效果:当用户问题较模糊或复杂时,这种方法能极大提升搜索结果的相关性。假设性问题的生成让模型能够在更大语义空间中找到答案,适用于金融分析、研究资料查找等需要深度理解的信息查询场景。


4. RAG-Fusion:多查询召回和 RRF 算法结合

RAG-Fusion 是将多查询召回(Multi-query Recall)与 RRF(Reciprocal Rank Fusion)算法结合使用的优化策略。通过使用多个查询来获取更全面的内容,再根据各次查询结果的重要性进行加权排序,确保高召回率和高相关性。

效果:RAG-Fusion 在应对复杂问题时表现突出。不同关键词的组合查询可以获取多角度的内容,而 RRF 算法则确保最终展示给用户的结果是高度相关的。该策略适合多样化查询场景,例如新闻搜索、科学文献检索,或产品推荐系统中的用户多样化需求。


5. 问题转换:改写和拓展问题语义

问题转换通过改写和语义扩展,将用户问题转换成多种表达方式,以便模型能在处理问题时更加灵活。可以使用同义词替换或增加补充信息等方法,帮助模型识别问题的不同表达方式,提高召回效果。

效果:问题转换显著扩展了模型的理解能力,对提升召回率尤为重要,尤其适用于开放式问题。在智能客服系统、搜索引擎或对话机器人等场景下,问题转换能大幅度增强模型理解用户问题的多样性。


6. 调整文本切分和领域分类:增强召回与准确度

合理的文本切分和领域分类可以优化模型的搜索过程。文本切分能够减少信息碎片化带来的影响,让模型更精准地找到相关内容。领域分类帮助模型在不同主题上进行精确检索,使得召回率和准确率双双提升。

效果:对文本内容按逻辑切分、分类,模型的查询准确性和相关性都能得到提升,适用于数据量大且分布在多个领域的数据。此策略适合大型文档库、知识库、行业报告等需要对内容精准管理的场景。


7. Small-to-Big 索引:通过小索引连接大内容

Small-to-Big 索引策略通过小规模内容(如摘要或关键句)建立索引,并链接到大规模内容主体中,提升检索的完整性。这种方法在多文档场景中非常有效,可以让模型通过小内容找到更多的上下文关联信息。

效果:这种方法提高了模型在多文档或长文档场景下的搜索完整性。用户可以获取更有逻辑连贯性的答案,适用于法律文件、技术文档等长文档的检索。


8. 结构化数据提取:定制提取提升准确率

在结构化数据丰富的领域中,针对特定结构化数据的提取策略能显著提升查询的准确率。通过精细设计的提取方式,模型可以更准确地找到相关内容,避免误检无关信息。

效果:结构化数据提取能够确保模型提取内容的精准性,在医疗、财务、法律等高度结构化数据场景中尤为有效。针对这些领域的特定需求进行数据定制,能大幅度减少无关信息的干扰,帮助模型提供更可靠的回答。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 提升RAG模型召回率的方法 #### 优化检索模块 为了提升RAG模型召回率,增强检索模块的效果至关重要。通过引入更先进的索引结构和技术可以显著改善这一方面。例如,在构建倒排索引时采用更加精细的数据预处理方法,如词干提取、同义词扩展等措施来增加匹配机会[^1]。 #### 改善编码器质量 高质量的文档和查询向量表示对于提高召回率同样重要。可以通过调整Transformer架构中的超参数设置或是利用对比学习等方式训练得到更好的文本表征能力;另外也可以尝试多模态输入方式,即不仅仅依赖纯文字信息作为源材料而是加入图像等内容形式辅助建模过程从而获得更为丰富的特征表达[^2]。 #### 调整相似度计算函数 不同的距离度量标准会对最终结果产生影响。实验表明余弦相似性和内积操作在某些情况下可能不如其他类型的核函数有效。因此有必要针对具体应用场景测试多种方案并选取最优者用于实际部署环境中去[^3]。 ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity, rbf_kernel def calculate_similarities(query_vector, document_vectors): # 使用不同类型的核函数计算相似度得分 cos_scores = cosine_similarity([query_vector], document_vectors)[0] kernel_scores = rbf_kernel([query_vector], document_vectors)[0] return { "cosine": list(cos_scores), "rbf_kernel": list(kernel_scores) } ``` #### 增加负样本采样多样性 适当扩大候选集规模有助于发现更多潜在的相关项。这不仅限于简单地增加数量级上的扩充,更重要的是要保证新增部分具有足够的异质性以覆盖尽可能广泛的主题范围。一种常见做法是在原始语料库基础上随机抽取一定比例未见过的新实例补充进来参与后续评估环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值