《实变函数简明教程》,P84,定理4.1(v)(非负简单函数的不等式关系 推导 相应的Lebesgue积分不等式关系)

《实变函数简明教程》,P84,定理4.1(v)(非负简单函数的不等式关系 推导 相应的Lebesgue积分不等式关系)

P84,定理4.1

  若 φ \varphi φ ψ \psi ψ都是可测集 E E E上的非负简单函数,则有
(i). 0 ≤ ∫ E φ ( x ) d x ≤ ∞ 0\le \int_{E}{\varphi \left( x \right)dx}\le \infty 0Eφ(x)dx
(ii). ∫ E c φ ( x ) d x = c ∫ E φ ( x ) d x \int_{E}{c\varphi \left( x \right)dx}=c\int_{E}{\varphi \left( x \right)dx} Ecφ(x)dx=cEφ(x)dx,其中 c c c为非负实数;
(iii). ∫ E ( φ ( x ) + ψ ( x ) ) d x = ∫ E φ ( x ) d x + ∫ E ψ ( x ) d x \int_{E}{\left( \varphi \left( x \right)+\psi \left( x \right) \right)dx}=\int_{E}{\varphi \left( x \right)dx}+\int_{E}{\psi \left( x \right)dx} E(φ(x)+ψ(x))dx=Eφ(x)dx+Eψ(x)dx
(iv). 又若 E = A ∪ B E=A\cup B E=AB A ∩ B = ∅ A\cap B=\varnothing AB= A , B ∈ M A,B\in M A,BM,则
∫ E φ ( x ) d x = ∫ A φ ( x ) d x + ∫ B φ ( x ) d x . \int_{E}{\varphi \left( x \right)dx}=\int_{A}{\varphi \left( x \right)dx}+\int_{B}{\varphi \left( x \right)dx}. Eφ(x)dx=Aφ(x)dx+Bφ(x)dx.
(v). 又若 φ ( x ) ≤ ψ ( x ) ( x ∈ E ) \varphi \left( x \right)\le \psi \left( x \right)\left( x\in E \right) φ(x)ψ(x)(xE),则
∫ E φ ( x ) d x ≤ ∫ E ψ ( x ) d x . \int_{E}{\varphi \left( x \right)dx}\le \int_{E}{\psi \left( x \right)dx}. Eφ(x)dxEψ(x)dx.

定理4.1(v)的第一种证明

由于 φ \varphi φ ψ \psi ψ都是 E E E上的简单函数,根据博文《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P60,关于 定义3.2中的简单函数的四则运算封闭性 的分析,可得
函 数 ψ − φ 也 是 一 个 简 单 函 数 。 函数\psi -\varphi也是一个简单函数。 ψφ
又由 φ ( x ) ≤ ψ ( x ) ( x ∈ E ) \varphi \left( x \right)\le \psi \left( x \right)\left( x\in E \right) φ(x)ψ(x)(xE)可推得
ψ ( x ) − φ ( x ) ≥ 0 ,   x ∈ E . \psi \left( x \right)-\varphi \left( x \right)\ge 0,\text{ }x\in E. ψ(x)φ(x)0, xE.

  1. 一方面,对非负简单函数 ψ ( x ) − φ ( x ) \psi \left( x \right)-\varphi \left( x \right) ψ(x)φ(x) φ ( x ) \varphi \left( x \right) φ(x)应用定理4.1的(iii),可得
    ∫ E ψ ( x ) d x = ∫ E [ ( ψ ( x ) − φ ( x ) ) + φ ( x ) ] d x = ∫ E ( ψ ( x ) − φ ( x ) ) d x + ∫ E φ ( x ) d x . \int_{E}{\psi \left( x \right)dx}=\int_{E}{\left[ \left( \psi \left( x \right)-\varphi \left( x \right) \right)+\varphi \left( x \right) \right]dx}=\int_{E}{\left( \psi \left( x \right)-\varphi \left( x \right) \right)dx}+\int_{E}{\varphi \left( x \right)dx}. Eψ(x)dx=E[(ψ(x)φ(x))+φ(x)]dx=E(ψ(x)φ(x))dx+Eφ(x)dx.
    对上式进行移项,可得
    ∫ E ψ ( x ) d x − ∫ E φ ( x ) d x = ∫ E ( ψ ( x ) − φ ( x ) ) d x . \int_{E}{\psi \left( x \right)dx}-\int_{E}{\varphi \left( x \right)dx}=\int_{E}{\left( \psi \left( x \right)-\varphi \left( x \right) \right)dx}. Eψ(x)dxEφ(x)dx=E(ψ(x)φ(x))dx.
  2. 另一方面,对非负简单函数 ψ ( x ) − φ ( x ) \psi \left( x \right)-\varphi \left( x \right) ψ(x)φ(x)应用定理4.1的(i),得到
    ∫ E ( ψ ( x ) − φ ( x ) ) d x ≥ 0. \int_{E}{\left( \psi \left( x \right)-\varphi \left( x \right) \right)dx}\ge 0. E(ψ(x)φ(x))dx0.
    基于式(1),式(2),我们可得
    ∫ E ψ ( x ) d x − ∫ E φ ( x ) d x ≥ 0 , 即 有 ∫ E φ ( x ) d x ≤ ∫ E ψ ( x ) d x . \int_{E}{\psi \left( x \right)dx}-\int_{E}{\varphi \left( x \right)dx}\ge 0,即有\int_{E}{\varphi \left( x \right)dx}\le \int_{E}{\psi \left( x \right)dx}. Eψ(x)dxEφ(x
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值