《实变函数简明教程》,P115,第13题(Lebesgue逐项积分定理 推导 Levi定理)
P 1 P_1 P1:Lebesgue逐项积分定理
设 { f k } \left\{ {
{f}_{k}} \right\} {
fk}是 E ⊂ R n E\subset {
{\mathbb{R}}^{n}} E⊂Rn上的非负可测函数列,则
f ( x ) : = ∑ k = 1 ∞ f k ( x ) ( x ∈ E ) f\left( x \right):=\sum\limits_{k=1}^{\infty }{
{
{f}_{k}}\left( x \right)}\text{ }\left( x\in E \right) f(x):=k=1∑∞fk(x) (x∈E)
可逐项积分,即有
∫ E ( ∑ k = 1 ∞ f k ( x ) ) d x = ∫ E f ( x ) d x = ∑ k = 1 ∞ ( ∫ E f k ( x ) d x ) . \int_{E}{\left( \sum\limits_{k=1}^{\infty }{
{
{f}_{k}}\left( x \right)} \right)dx}=\int_{E}{f\left( x \right)dx}=\sum\limits_{k=1}^{\infty }{\left( \int_{E}{
{
{f}_{k}}\left( x \right)dx} \right)}. ∫E(k=1∑∞fk(x))dx=∫Ef(x)dx=k=1∑∞(∫Efk(x)dx).
P 2 P_2 P2:Levi定理
设 { f k } \left\{ {
{f}_{k}} \right\} {
fk}是 E ⊂ R n E\subset {
{\mathbb{R}}^{n}} E⊂Rn上的非负可测函数递增列,令
f ( x ) : = lim k → ∞ f k ( x ) ( x ∈ E ) . f\left( x \right):=\underset{k\to \infty }{\mathop{\lim }}\,{
{f}_{k}}\left( x \right)\text{ }\left( x\in E \right). f(x):=k→∞limfk(x) (x∈E).
成立
∫ E ( lim k → ∞ f k ( x ) ) d x = ∫ E f ( x ) d x = lim k → ∞ ( ∫ E f k ( x ) d x ) . \int_{E}{\left( \underset{k\to \infty }{\mathop{\lim }}\,{
{f}_{k}}\left( x \right) \right)dx}=\int_{E}{f\left( x \right)dx}=\underset{k\to \infty }{\mathop{\lim }}\,\left( \int_{E}{
{
{f}_{k}}\left( x \right)dx} \right). ∫E(k→∞limfk(x))dx=∫E</