《实变函数简明教程》,P115,第13题(Lebesgue逐项积分定理 推导 Levi定理)

本文详细介绍了Lebesgue逐项积分定理及其在推导Levi定理中的应用。通过构造非负可测函数递增列,并利用Lebesgue逐项积分定理,证明了当函数列趋于极限时,积分的极限等价于极限的积分。
摘要由CSDN通过智能技术生成

《实变函数简明教程》,P115,第13题(Lebesgue逐项积分定理 推导 Levi定理)

P 1 P_1 P1:Lebesgue逐项积分定理

  设 { f k } \left\{ { {f}_{k}} \right\} { fk} E ⊂ R n E\subset { {\mathbb{R}}^{n}} ERn上的非负可测函数列,则
f ( x ) : = ∑ k = 1 ∞ f k ( x )   ( x ∈ E ) f\left( x \right):=\sum\limits_{k=1}^{\infty }{ { {f}_{k}}\left( x \right)}\text{ }\left( x\in E \right) f(x):=k=1fk(x) (xE)
可逐项积分,即有
∫ E ( ∑ k = 1 ∞ f k ( x ) ) d x = ∫ E f ( x ) d x = ∑ k = 1 ∞ ( ∫ E f k ( x ) d x ) . \int_{E}{\left( \sum\limits_{k=1}^{\infty }{ { {f}_{k}}\left( x \right)} \right)dx}=\int_{E}{f\left( x \right)dx}=\sum\limits_{k=1}^{\infty }{\left( \int_{E}{ { {f}_{k}}\left( x \right)dx} \right)}. E(k=1fk(x))dx=Ef(x)dx=k=1(Efk(x)dx).

P 2 P_2 P2:Levi定理

  设 { f k } \left\{ { {f}_{k}} \right\} { fk} E ⊂ R n E\subset { {\mathbb{R}}^{n}} ERn上的非负可测函数递增列,令
f ( x ) : = lim ⁡ k → ∞   f k ( x )   ( x ∈ E ) . f\left( x \right):=\underset{k\to \infty }{\mathop{\lim }}\,{ {f}_{k}}\left( x \right)\text{ }\left( x\in E \right). f(x):=klimfk(x) (xE).
成立
∫ E ( lim ⁡ k → ∞   f k ( x ) ) d x = ∫ E f ( x ) d x = lim ⁡ k → ∞   ( ∫ E f k ( x ) d x ) . \int_{E}{\left( \underset{k\to \infty }{\mathop{\lim }}\,{ {f}_{k}}\left( x \right) \right)dx}=\int_{E}{f\left( x \right)dx}=\underset{k\to \infty }{\mathop{\lim }}\,\left( \int_{E}{ { {f}_{k}}\left( x \right)dx} \right). E(klimfk(x))dx=E</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值