深度学习指标:准确率acc,精确率precision,召回率recall,f1-score的通俗解释

本文详细介绍了分类任务中的关键评估指标,包括准确率、精确率、召回率及F-score,并通过一个具体的男女儿童分类案例来说明这些指标的具体计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TP: 将正类预测为正类数
FN: 将正类预测为负类数
FP: 将负类预测为正类数
TN: 将负类预测为负类数

准确率(accuracy) = 预测对的/所有 = (TP+TN)/(TP+FN+FP+TN)
精确率(precision) = TP/(TP+FP)
召回率(recall) = TP/(TP+FN)
f-score = 精确率 * 召回率 * 2 / (精确率 + 召回率)

举个例子

最近正好做 男女儿童的分类,举个具体的例子解释一下:
假设 儿童5w, 识别成儿童的有4w, 识别成other 的有1w.
other10w, 识别成other的有8w, 识别成儿童的有 2w
下面分析儿童的准确率和召回率,那么按照给出的信息分析下面表格:
儿童相关数据 -----------------------------------------------------儿童不相关数据
检索到儿童是儿童的数据并识别为儿童 ---------------- 把other识别成儿童
(正类识别为正类, TP=4w)---------------------(负类识别为正类,FP=2w)
未检索到儿童是儿童数据却识别为other---------------把other识别为 other
(正类识别为负类, FN= 1w) -------------------------- (负类识别为负类, TN=8w)

准确率acc

准确率是我们最常见的评价指标,而且很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。
在这里插入图片描述
acc = (4+8)/(4+2+1+8)=80%

精确率precision:

你认为的该类样本,有多少猜对了(猜的精确性如何)。可以解释为,在所有判别为儿童的数据中是儿童的数据的比例.TP表示是真正分类正确的数量。分母TP+FP表示被识别成儿童的总数
在这里插入图片描述

precision = TP /(TP + FP) = 66.67%

召回率 recall:

召回率可解释为, 在所有儿童相关的数据中,判别为儿童的数据的比例:
通俗对的解释就是,本来该有5W个儿童,算法召回了多少。
recall = TP / (TP + FN) = 80%

F-score =精确率 * 召回率 * 2 / (精确率 + 召回率)

f-score =(0.667*0.8)*2/(0.667+0.8) = 72.8%

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值