一. PCL中库的作用
1. Filter Library
- 去除一些影响判断的阴影部分;
- 通过计算点到邻域的距离的分布情况来确定是不是稀疏外点,从而去除;
- 对于每一个点,它到所有邻域点的均值距离将被计算。其中,某点的均值距离在全部点的均值距离和标准方差的某个区间之外的点,就被认为是外点,从dataset中剔除。
2. Features Library
- 3D 特征会表现在某些3D 点上,某个位置上。它描述了基于某个点周围的几何分布的信息;
- 在某个查寻点的周围,通常指K-neighborhood.
- 最常用点的几何特征有两个,分别是被查询点所属表面的曲率估计值和法线,它们都称为局部特征;而这两个局部分特征值用k个最接近的邻域点来表示。
- 邻域点的选择,则需要提前将输入点云分成chunks。而这个分割的过程,要使用空间分解技术:octrees 或者kD-trees。 这样,只需要在这个空间中查找邻域点就可以了。
- 最简单的估计某个点的表面法线和曲率变化的方法,是使用eigen分解,也就是计算某个表面块的K邻域点的特征矢量和特征值。而对应最小特征值的特征向量,可以近似为该点的表面法线。此时表面曲率的变化 可以用下面的特征值估计: