文章目录
在人工智能领域,DeepSeek 无疑是近期的一颗璀璨明星,以其卓越的性能和创新技术赢得了全球范围内的广泛关注。然而,要想真正驾驭这一强大的工具,掌握提示词的运用是关键。为了帮助您更好地理解和使用 DeepSeek,我们精心挑选了四本专业书籍,旨在从不同角度深入剖析提示词的奥秘,让您的工作和生活因 AI 而更加高效。以下,便是这些书籍的详细介绍,让我们一起探索 DeepSeek 的无限潜能。
1. 《神经网络与深度学习》
作者: 邱锡鹏
推荐理由:
复旦大学邱锡鹏教授力作,周志华、李航联袂推荐!深受好评的深度学习讲义“蒲公英书”正式版!系统整理深度学习的知识体系,由浅入深地阐述深度学习的原理、模型及方法。
内容介绍:
本书全面阐述了神经网络的基本原理,从神经元模型到多层神经网络的构建,讲解细致入微。在深度学习部分,详细介绍了卷积神经网络(CNN)、循环神经网络(RNN)及其变体 LSTM、GRU 等。对于理解 DeepSeek 在处理图像、语音等多模态数据时所依赖的神经网络基础,这本书提供了扎实的理论知识。
2. 《强化学习:原理与Python实战》
作者: 肖智清
推荐理由:
数学原理+算法+性能分析,逐章配套Python代码和运行结果,深度强化学习算法配套TensorFlow和PyTorch双实现。
内容介绍:
本书深入讲解强化学习原理,从基础概念到复杂算法,逐步剖析。书中结合大量 Python 实战案例,让读者在实践中掌握强化学习精髓。通过学习本书,你能理解 DeepSeek 如何利用强化学习让模型在与环境交互中不断优化决策,提升性能。
3. 《Python深度学习》
作者: 吴茂贵、郁明敏、杨本法、李涛 等
推荐理由:
畅销书升级,PyTorch领域公认标准著作,20余年研发经验AI专家撰写,详解PyTorch深度学习全栈知识。
内容介绍:
本书以 Python 为编程语言,基于 PyTorch 框架,全面阐述深度学习知识。从神经网络的基础原理到复杂模型的搭建,逐步深入讲解。对于理解 DeepSeek 如何利用 Python 和 PyTorch 实现高效的深度学习模型训练与应用,这本书提供了坚实的技术基础。
4. 《CUDA并行编程实战》
作者: 理查德·安索奇(Richard Ansorge)
推荐理由:
剑桥大学卡文迪什实验室高级讲师多年经验总结;示例丰富,提供代码下载,助你掌握CUDA编程精髓。
内容介绍:
本书从 CUDA 编程的基本概念入手,讲解线程模型、内存管理以及核函数的编写等核心内容。通过学习这本书,读者能够深入理解 GPU 并行计算的原理和方法,明白如何通过 CUDA 编程将计算任务并行化,充分发挥 GPU 的计算能力。
5. 《Transformer自然语言处理实战》
作者: 路易斯·汤斯顿、莱安德罗·冯·韦拉 等
推荐理由:
斯坦福大学首任Thomas M. Siebel教授Christopher Manning与fast.ai联合创始人Jeremy Howard双双大力推荐!
内容介绍:
本书专注于 Transformer 在自然语言处理中的实战应用,借助 Hugging Face Transformers 库,引导读者构建各类 NLP 应用。学习本书,你能深入理解 DeepSeek 如何基于 Transformer 架构实现自然语言处理的高效与精准。
6. 《Ray分布式机器学习》
作者: 马克斯·普佩拉、爱德华·奥克斯、理查德·廖
推荐理由:
Ray核心贡献者亲笔撰写,化繁为简,通过一系列简单易懂的示例系统阐释分布式机器学习实用技术、工具和方法。
内容介绍:
本书围绕 Ray 框架,系统阐述分布式机器学习在大模型数据处理、训练、推理及部署方面的应用。学习本书,你能明白 DeepSeek 如何借助分布式技术,将计算任务分布到多个节点,加速模型训练与推理。