多机器人协同编队算法原理及实现

多机器人编队(一)机器人协同编队算法原理及实现


多机器人协同编队需要将理论和实践紧密地结合起来,其应用包括编队队形生成、保持、变换和路径规划与避障等等都是基于图论的理论基础完成的。

图论基础

控制协同多智能体动态系统是通过通信图进行相互联系的动力学问题,通信图表明了各个节点之间的信息流。协同控制的目标是为各个节点设计控制协议,以保证所有节点在某种特定意义上的状态同步行为。在协同系统中,任何控制协议都必须按照其所规定的图拓扑结构进行分布式控制,也就是说,每个节点的控制协议只允许依赖于关于该节点及其在图中的邻居节点的信息,拓扑图施加的通信限制可能会严重限制每个节点上的本地分布式控制协议所能完成的工作。

在多机器人协同编队中,我们关注的是动态系统的行为和相互作用,这些动态系统通过通信网络的链接相互联系,该通信网络被建模为具有与系统间允许的信息流相对应的有向边的图,编队中的每个机器人被建模为图中的节点,那么最基本的问题就变为了图拓扑如何与节点的本地反馈控制协议交互,以生成互连节点的整体行为,下面展示一些在研究多机器人协同编队中必不可少的基本的图论概念。

一个拓扑图可以表示为 G = ( V , E ) G=(V, E) G=(V,E),其中 V = { v 1 , … , v N } V=\{ v_1,…,v_N \} V={ v1,,vN}表示N个节点的集合,E表示E条边的集合,假设图为简单有向图,即 ( v i , v j ) ∉ E (v_i,v_j) \notin E (vi,vj)/E并且同一对节点之间没有多条边,集合E中的元素 ( v i , v j ) (v_i,v_j) (vi,vj)表示从节点vj指向节点 v i v_i vi的边,在编队中表示信息从节点 v j v_j vj机器人流向节点 v i v_i vi机器人,节点 v i v_i vi机器人的出度 d i o d_i^o dio表示以其为数据发送端的边的数量,入度 d i d_i di表示以其为数据接收端的边的数量。

图的结构和性质可以通过研究与图相关的某些矩阵的性质来研究,这就是代数图论。给定边的权值 a i j a_{ij} aij后,该图便可以被一个邻接矩阵或连通矩阵 A = [ a i j ] A=[a_{ij}] A=[aij]表示,其中当

评论 50
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RedGlass_lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值