Paper阅读记录:A review of deep learning in medical imaging: Image traits, technology trends, case studies with progress highlights, and future promises.
Abstract
本文强调了医学成像的临床需求和技术挑战,并描述了深度学习的新趋势如何解决这些问题。本文的topic包括:
- network architecture
-
sparse and noisy labels
-
federating learning
-
interpretability
-
uncertainty
另外,本文介绍了在:digital pathology and chest, brain, cardiovascular, and abdominal imaging上的研究。
Overview
- 医学图像占据了医疗保健数据的90%;
- 医学图像的特质:多模态,数据源受限于隐私和政策较为异构和孤立,疾病众多,标签稀疏且含较大噪声,样本不均衡,图像处理分析任务复杂;
- 临床需求和应用:医学影像是疾病诊断过程的重要部分。Decision Support: Detection of pathological findings, Quantification of disease extent, Characterization of pathologies. (简单总结就是:检测、分割和分类)
- 关键技术:图像重建、图像增强、图像分割、图像配准、计算机辅助检测和诊断、其他技术等;
- 历史展望:2015~2016 Transfer Learning;2017~2018 Synthetic Data Augmentation;
- 深度学习方法:更深的网络(更大的容量和更强的泛化能力);对抗网络和注意力机制;神经网络搜索(NAS)和轻量化设计;标注效率相关的方法(transfer learning, domain adaptation, self-supervised learning, semi-supervised learning, weakly/partially supervised learning);迁移学习;域适应;自监督学习;半监督学习;弱监督学习;无监督学习和disentanglement;Embedding knowledge into learning;联邦学习(Federated learning);Interpretability;Model-based interpretability:
CASE STUDIES
- 介绍了肺部疾病相关的研究;(肺炎/肺叶分割等)
- 介绍了脑神经影像研究;neuroimaging
- 心血管图像研究;cardiovascular imaging
- 腹部影像研究;abdominal imaging
- 电子显微镜影像研究;microscopy imaging
以上,论文从宏观角度讲解了各类模态影像的特点、研究任务、Challenge、部分方法,对各case的研究领域可以有一定了解。后续再详细查看CASE STUDIES。