能量泛函和变分法

首先了解“泛函数”概念:

        

通常的函数在  R或C( n是自然数)中的集合上定义。泛函数常在 函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或 复数)。通俗地说,泛函数是以函数作为变元的函数。泛函数概念的产生与变分学问题的研究发展有密切关系。
传统上, 泛函通常是指一种 定义域为函数,而值域为实数的“函数”。换句话说,就是从函数组成的一个 向量空间实数的一个 映射。也就是说它的输入为函数,而输出为实数。泛函的应用可以追溯到 变分法,那里通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。
变分法:
变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的 临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它分辨不出找到的是最大值还是最小值(或者两者都不是)。
变分法在 理论物理中非常重要:在 拉格朗日力学中,以及在 最小作用量原理量子力学的应用中。变分法提供了 有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有, 黎曼调和函数中使用狄力克雷原理。 最优控制的理论是变分法的一个推广。
同样的材料可以出现在不同的标题中,例如 希尔伯特空间技术,摩尔斯理论,或者 辛几何变分一词用于所有极值泛函问题。微分几何中的 测地线的研究是很显然的变分性质的领域。 极小曲面(肥皂泡)上也有很多研究工作,称为Plateau问题。
欧拉-拉格朗日方程:
欧拉-拉格朗日方程 (Euler-Lagrange equation) 简称E-L方程,在力学中则往往称为拉格朗日方程。正如上面所说,变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的 临界点
值得指出的是,E-L方程只是泛函有极值的 必要条件,并不是充分条件。就是说,当泛函有极值时,E-L方程成立。在应用中,外界给定的条件可以使得E-L方程在大多数情况下满足我们的需求。所以尽管下面我们要在比较强的条件下推导,并且这种推导在某些意义上有些不太严谨,完全可以在较弱的情况下予以完全严谨的证明,但是就我们所要用的层面而言,也是足够的了。

  • 7
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值